K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
26 tháng 7 2021

\(2sin\left(3x-150^o\right)+1=0\)

\(\Leftrightarrow sin\left(3x-150^o\right)=-\frac{1}{2}\)

\(\Leftrightarrow\orbr{\begin{cases}3x-150^o=-30^o+k.360^o\\3x-150^o=210^o+k.360^o\end{cases}},k\inℤ\)

\(\Leftrightarrow\orbr{\begin{cases}x=40^o+k.120^o\\x=k.120^o\end{cases}},k\inℤ\)

NV
10 tháng 7 2021

\(\Leftrightarrow2sin^3x+1-sin^2x-1=0\)

\(\Leftrightarrow sin^2x\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\sinx=\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{\pi}{6}+k2\pi\\x=\dfrac{5\pi}{6}+k2\pi\end{matrix}\right.\)

23 tháng 10 2023

loading...  loading...  

17 tháng 8 2020

lm trên symbolab.com

17 tháng 8 2020

\(\left(2\sin x-1\right)\left(2\sin2x+1\right)=3-4\cos^2x\)

\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=3-4\left(2-\sin^2x\right)\)

\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=4\sin^2x-1\)

\(\Leftrightarrow\left(2\sin x-1\right)\left(2\sin2x+1\right)=\left(2\sin x-1\right)\left(2\sin x+1\right)\)

\(\Leftrightarrow2\sin2x+1=2\sin x+1\)

\(\Leftrightarrow\sin2x=\sin x\)

\(\Leftrightarrow\sin2x-\sin x=0\)

\(\Leftrightarrow2\cos\frac{3}{2}-\cos\frac{x}{2}=0\)

\(\Leftrightarrow\orbr{\begin{cases}\cos\frac{3}{2}=0\\\cos\frac{x}{2}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\frac{3x}{2}=\frac{\pi}{2}+k2\pi\\\frac{x}{2}=\frac{\pi}{2}+k2\pi\end{cases}\left(k\inℤ\right)}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\pi}{3}+\frac{2\pi}{3}k\\x=\pi+4k\pi\end{cases}\left(k\inℤ\right)}\)

9 tháng 10 2021

\(2sin^2x+cosx=0\Rightarrow2\left(1-cos^2x\right)+cosx=0\)

\(\Rightarrow-2cos^2x+cosx+2=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=\dfrac{1+\sqrt{17}}{4}\left(loại\right)\\cosx=\dfrac{1-\sqrt{17}}{4}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=arccos\dfrac{1-\sqrt{17}}{4}+k2\pi\\x=-arccos\dfrac{1-\sqrt{17}}{4}+k2\pi\end{matrix}\right.\)

11 tháng 3 2017

13 tháng 5 2019

Giải bài 2 trang 36 sgk Đại số 11 | Để học tốt Toán 11

Vậy phương trình có tập nghiệm 

Giải bài 2 trang 36 sgk Đại số 11 | Để học tốt Toán 11 (k ∈ Z)

NV
26 tháng 7 2021

Đặt \(\dfrac{x}{4}=t\)

\(2sin^22t-3cost=0\)

\(\Leftrightarrow8sin^2t.cos^2t-3cost=0\)

\(\Leftrightarrow8cos^2t\left(1-cos^2t\right)-3cost=0\)

\(\Leftrightarrow-8cos^4t+8cos^2t-3cost=0\)

\(\Leftrightarrow-cost\left(8cos^3t-8cost+3\right)=0\)

\(\Leftrightarrow cost\left(2cost-1\right)\left(4cos^2t+2cost-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cost=0\\cost=\dfrac{1}{2}\\cost=\dfrac{-1+\sqrt{13}}{4}\\cost=\dfrac{-1-\sqrt{13}}{4}< -1\left(loại\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)