Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)
Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :
\(\sqrt{x+t}+\sqrt{x-t}=4\)
\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)
\(< =>2x+2\sqrt{x^2-x-11}=4\)
\(< =>x+\sqrt{x^2-x-11}=4\)
\(< =>x^2-x-11=\left(4-x\right)^2\)
\(< =>x^2-x-11=16-8x+x^2\)
\(< =>x^2-x-11-16+8x-x^2=0\)
\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)
Vậy phương trình trên vô nghiệm
Chỗ \(2x+2\sqrt{x^2-x-11}\)=4
suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn
tới đó thì mình làm được rồi cảm ơn bạn
a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)
xog xét 2 TH
b, bình phương
2
GTLN : 2 dấu = xra \(2\le x\le4\)
bn mũ 3 lên đc bao nhiêu đã
sau đó p/t thành nhân tử đặt nhân tử chung
hok tốt
ĐK \(-1\le x\le7\)
Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)
\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)
=> \(VP\le4\)(2)
Từ (1);(2)
=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)
Vậy x=3
bài 1 :điều kiện\(4\le x\le6\)
ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)
\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)
bài 2 :điều kiện : \(2\le x\le4\)
ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)
\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)
\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
b) cách khác:
\(pt\Leftrightarrow11-x-4\sqrt{x+3}-2\sqrt{3-2x}=0\)
\(\Leftrightarrow3-2x-2\sqrt{3-2x}+1+x+3-4\sqrt{x+3}+4=0\)
\(\Leftrightarrow\left(\sqrt{3-2x}-1\right)^2+\left(\sqrt{x+3}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{3-2x}-1=\sqrt{x+3}-2=0\)
\(\Leftrightarrow x=1\)
ĐK: x \(\ge11\)
\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\Leftrightarrow\sqrt{x^2-x+11}=8-x\) ( x \(\le8\) ) \(\Leftrightarrow x^2-x+11=\left(8-x\right)^2\Leftrightarrow x^2-x+11=64-16x+x^2\Leftrightarrow15x-53=0\Leftrightarrow x=\dfrac{53}{15}\) (ktmđk)
Vậy phương trình vô nghiệm
tks cậu