\(\sqrt{x+\sqrt{x-11}}\)+\(\sqrt{x-\sqrt{x-11}}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2020

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)

Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :

\(\sqrt{x+t}+\sqrt{x-t}=4\)

\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)

\(< =>2x+2\sqrt{x^2-x-11}=4\)

\(< =>x+\sqrt{x^2-x-11}=4\)

\(< =>x^2-x-11=\left(4-x\right)^2\)

\(< =>x^2-x-11=16-8x+x^2\)

\(< =>x^2-x-11-16+8x-x^2=0\)

\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)

Vậy phương trình trên vô nghiệm

6 tháng 8 2020

Chỗ \(2x+2\sqrt{x^2-x-11}\)=4

suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn

tới đó thì mình làm được rồi cảm ơn bạn

25 tháng 6 2018

a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)

xog xét 2 TH

b, bình phương 

2

GTLN : 2 dấu = xra \(2\le x\le4\)

27 tháng 6 2018

Hà Thị Thế pạn làm ra lun giúp mjk dx k ạ

11 tháng 7 2019

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

12 tháng 7 2019

Dấu căn của x-1 đâu bạn j eiiiii

4 tháng 10 2020

a) đk: \(x\ge3\)

Ta có: \(\sqrt{x-3}=3x-11\)

\(\Leftrightarrow x-3=9x^2-66x+121\)

\(\Leftrightarrow9x^2-67x+124=0\)

\(\Leftrightarrow\left(9x^2-36x\right)-\left(31x-124\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(9x-31\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\9x-31=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=\frac{31}{9}\end{cases}}\)

4 tháng 10 2020

a, \(\sqrt{x-3}=3x-11\left(đk:x\ge3\right)< =>\sqrt{x-3}-1=3x-12\)

\(< =>\frac{x-4}{\sqrt{x-3}+1}-3\left(x-4\right)=0< =>\left(x-4\right)\left(\frac{1}{\sqrt{x-3}+1}-3\right)=0\)

\(< =>\orbr{\begin{cases}x-4=0\\\frac{1}{\sqrt{x-3}+1}=3\end{cases}}< =>\orbr{\begin{cases}x=4\left(tm\right)\\\sqrt{x-3}+1=\frac{1}{3}\left(vl\right)\end{cases}}\)

6 tháng 7 2018

bài 1 :điều kiện\(4\le x\le6\) 

 ta có \(VT=\left(\sqrt{x-4}+\sqrt{6-x}\right)\le\sqrt{2\left(x-4+6-x\right)}=\sqrt{2\cdot2}=2\)

\(VP=x^2-10x+27=x^2-10x+25+2=\left(x-5\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=5\)(t/m)

bài 2 :điều kiện : \(2\le x\le4\)

ta có \(VT=\left(\sqrt{x-2}+\sqrt{4-x}\right)\le\sqrt{2\left(x-2+4-x\right)}=2\)

\(VP=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

\(\Rightarrow VT=VP=2\Leftrightarrow x=3\)(t/m)

13 tháng 8 2017

a. ĐK: x > 1 (gộp 2 điều kiện là biểu thức dưới 2 căn >0)

x - 2\(\sqrt{x-1}\) = 4 <=> x-4 = 2\(\sqrt{x-1}\)<=> (x-4)2 = 4(x-1) <=> x2-12x+20 = 0 <=> x= 2 và x =10 (thỏa mãn đk)

Đáp số: x = 2 và x = 10

b. ĐK: x > 2 (gộp 3 điều kiện)

Nhận xét biểu thức dưới căn là 1 hằng đẳng thức dạng a2-4a+4 và a2+4a+4. Sau đó sẽ làm mất căn. Lúc này bạn có thể tự giải.

Đáp số: Vô nghiệm

c. ĐK: -3\(\le\)x\(\le\)5.

Bình phương lần 1 trừ và chia 2 cho 2 vế được:  \(\sqrt{x+3}\sqrt{5-x}=124\)

Bình phương lần 2 được: -x2+2x+15=15376 và giải như thường (chú ý loại nghiệm theo điều kiện)

Có vẻ đề toán ghi sai nên kết quả hơi đáng ngờ nhá

21 tháng 9 2019

 ĐKXĐ:....

\(\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}\)

\(\Rightarrow4-\sqrt{1-x}=2-x\)

\(\Rightarrow\sqrt{1-x}=2+x\)

\(\Rightarrow1-x=4+4x+x^2\)

\(\Rightarrow1-x-4-4-x^2=0\)

\(\Rightarrow x^2+x+7=0\)

Đến đây dễ rồi làm nốt nha bạn !

27 tháng 9 2019

 ĐKXĐ:....

\sqrt{4-\sqrt{1-x}}=\sqrt{2-x}4−1−x​​=2−x

\Rightarrow4-\sqrt{1-x}=2-x⇒4−1−x​=2−x

\Rightarrow\sqrt{1-x}=2+x⇒1−x​=2+x

\Rightarrow1-x=4+4x+x^2⇒1−x=4+4x+x2

\Rightarrow1-x-4-4-x^2=0⇒1−x−4−4−x2=0

\Rightarrow x^2+x+7=0⇒x2+x+7=0

Đến đây dễ rồi làm nốt nha bạn !