Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
Đặt \(\sqrt{x^2+7}=a\left(a\ge\sqrt{7}\right)\)
pt đã cho trở thành \(a^2+4x=\left(x+4\right)a\)
\(\Leftrightarrow a^2-\left(x+4\right)a+4x=0\)
\(\Delta=\left(x+4\right)^2-4.4x=x^2+8x+16-16x=\left(x-4\right)^2\ge0\)
\(\Rightarrow\left[{}\begin{matrix}a=\frac{x+4-\sqrt{\left(x-4\right)^2}}{2}\\a=\frac{x+4-\sqrt{\left(x-4\right)^2}}{2}\end{matrix}\right.\)
Bạn xét x>=4 là 1 TH
x<4 là TH2 để phá giá trị tuyệt đối
\(\left(x^3-4\right)^3=\left(\sqrt[3]{\left(x^2+4\right)^2}+4\right)^2\)
\(pt\Leftrightarrow x^9-12x^6+48x^3-64=\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+8\sqrt[3]{\left(x^2+4\right)^2}+16\)
\(\Leftrightarrow x^9-12x^6+48x^3-128=\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2-16+8\sqrt[3]{\left(x^2+4\right)^2}-32\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)=\dfrac{\left(x^2+4\right)^4-4096}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\dfrac{512\left(x^2+4\right)^2-32768}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)=\dfrac{\left(x-2\right)\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}+\dfrac{512\left(x-2\right)\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\dfrac{\left(x-2\right)\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}-\dfrac{512\left(x-2\right)\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\dfrac{\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}-\dfrac{512\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}\right]=0\)
Dễ thấy: \(\left(x^2+2x+4\right)\left(x^6-4x^3+16\right)-\dfrac{\left(x+2\right)\left(x^2+12\right)\left(x^4+8x^2+80\right)}{\left(\sqrt[3]{\left(x^2+4\right)^2}\right)^2+16}-\dfrac{512\left(x+2\right)\left(x^2+12\right)}{8\sqrt[3]{\left(x^2+4\right)^2}+32}=0\) vô nghiệm
\(\Rightarrow x-2=0\Rightarrow x=2\)
P.s: dễ thấy thật :v
a) ĐK: \(x\inℝ\).
Đặt \(\sqrt{x^2-3x+4}=a>0\)
\(x^2-5x+4-\left(2x-1\right)a=0\)
\(\Leftrightarrow a^2-\left(2x-1\right)a-2x=0\)
\(\Leftrightarrow-\left(a+1\right)\left(2x-a\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-1\left(L\right)\\2x=a\left(C\right)\end{cases}}\)
Xét \(2x=a\Leftrightarrow\hept{\begin{cases}x>0\\a^2=4x^2\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\-3x^2-3x+4=0\end{cases}}\Leftrightarrow x=\frac{-3+\sqrt{57}}{6}\) ( đã loại 1 nghiệm vì ko t/m x> 0)
P/s: em ko chắc:v
c,chia cả tử và mẫu cho x,sau đó đặt 3x+2/x=t
các câu còn lại hiện chưa giải đc vì chưa có giấy nháp,lúc nào rảnh mình chỉ cho cách làm
\(x^3+x^2+7x+7=\sqrt{\left(3-x\right)^3}\)
\(\Leftrightarrow x^2\left(x+1\right)+7\left(x+1\right)=\sqrt{\left(3-x\right)^3}\)
\(\Leftrightarrow\left(x^2+7\right)\left(x+1\right)-\sqrt{\left(3-x\right)^3}=0\)
( Em chưa học lớp 9 nên chỉ biết tới đây thôi ạ!)