Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé )
a) \(\sqrt{7-x}+\sqrt{x-5}=x^2-12x+38\)
ĐKXĐ : \(5\le x\le7\)
Bình phương vế trái ta được:
\(VT^2=7-x+x-5+2\sqrt{\left(7-x\right)\left(x-5\right)}\)
\(=2+2\sqrt{-x^2+12x-35}\)
\(=2+2\sqrt{1-\left(x^2-12x+36\right)}\)
\(=2+2\sqrt{1-\left(x-6\right)^2}\le2+2.1=4\)
=> \(VT\le2\) \(\left(VT\ge0\right)\) (1)
\(VP=x^2-12x+38=\left(x^2-12x+36\right)+2=\left(x-6\right)^2+2\ge2\) (2)
Từ (1) và (2) suy ra VT=VP=2
=> x=6 (thỏa mãn ĐKXĐ)
Vậy ...
b)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{x^2+2x-3}=4-2x\)
ĐKXĐ : \(x\ge1\)
Với ĐKXĐ ta luôn có: \(VT=\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x+3\right)}\ge\sqrt{4}=2\) (1)
\(VP=4-2x=2\left(2-x\right)\le2\) (2)
Từ (1) và (2) suy ra VT = VP = 2
=> x=1 ( Thỏa mãn ĐKXĐ )
Vậy ...
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)