Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ : \(x\ge5\)
Đặt \(\sqrt{x-5}=a;\sqrt[3]{3-x}=b\)(a \(\ge0\))
Khi đó phương trình thành a + b = 2
Lại có \(b^3+a^2=-2\)
=> HPT : \(\hept{\begin{cases}a+b=2\\b^3+a^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+\left(2-b\right)^2=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b^3+b^2-4b+6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=2-b\\\left(b+3\right)\left(b^2-2b+2\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=2-b\\b=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-3\end{cases}}\)(tm)
a = 5 => x = 30 (tm)
Vậy x = 30 là nghiệm phương trình
d) Ta có \(\sqrt{25x^2-20x+4}+\sqrt{25x^2-40x+16}=0\)
<=> \(\sqrt{\left(5x-2\right)^2}+\sqrt{\left(5x-4\right)^2}=2\)
<=> |5x - 2| + |5x - 4| = 2
Lại có |5x - 2| + |5x - 4| = |5x - 2| + |4 - 5x| \(\ge\left|5x-2+4-5x\right|=2\)
Dấu "=" xảy ra <=> \(\left(5x-2\right)\left(4-5x\right)\ge0\Leftrightarrow\frac{2}{5}\le x\le\frac{4}{5}\)
Vậy \(\frac{2}{5}\le x\le\frac{4}{5}\)là nghiệm phương trình
ĐKXĐ: \(2x-5\ge0\Leftrightarrow x\ge2,5\)
pt\(\Leftrightarrow\sqrt{2x+4-2.3\sqrt{2x-5}}+\sqrt{2x-4+2\sqrt{2x-5}}=4\)\(\Leftrightarrow\sqrt{2x-5-2.3\sqrt{2x-5}+9}+\sqrt{2x-5+2\sqrt{2x-5}+1}=4\)
\(\Leftrightarrow\sqrt{\left(\sqrt{2x-5}-3\right)^2}+\sqrt{\left(\sqrt{2x-5}+1\right)^2}=4\)
\(\Leftrightarrow\left|\sqrt{2x-5}-3\right|+\left|\sqrt{2x-5}+1\right|=4\)
\(\Leftrightarrow\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|=4\)
Có: \(VT=\left|3-\sqrt{2x-5}\right|+\left|\sqrt{2x-5}+1\right|\ge\left|3-\sqrt{2x-5}+\sqrt{2x-5}+1\right|=4=VP\)
Dấu "=" xảy ra khi \(\left(3-\sqrt{2x-5}\right)\left(\sqrt{2x-5}+1\right)\ge0\)
Mà \(\sqrt{2x-5}+1\ge0\Rightarrow3-\sqrt{2x-5}\ge0\Rightarrow\sqrt{2x-5}\le3\)
\(\Rightarrow0\le\sqrt{2x-5}\le3\)
\(\Leftrightarrow0\le2x-5\le9\)
\(\Leftrightarrow2,5\le x\le7\)(TM)
ĐKXĐ \(x\ge\frac{5}{2}\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
\(\Rightarrow\sqrt{2x-5+6\sqrt{2x-5}+9}+\sqrt{2x-5-2\sqrt{2x-5}+1}=4\)
\(\Rightarrow\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
\(\Rightarrow\sqrt{2x-5}+3+|\sqrt{2x-5}-1|=4\)(1)
+, \(\frac{5}{2}\le x< 3\),khi đó pt (1) trở thành
\(\sqrt{2x-5}+3+1-\sqrt{2x-5}=4\)\(\Rightarrow0x=0\)(luôn đúng)
+, \(x\ge3\),khi đo pt (1) trở thành
\(\sqrt{2x-5}+3+\sqrt{2x-5}-1=4\)
\(\sqrt{2x-5}=1\Rightarrow2x-5=1\Rightarrow x=3\)
Vậy pt đã cho có nghiệm là \(\frac{5}{2}\le x\le3\)
nhân cả 2 vế vs căn 2 sau đó cố gắng đưa mấy cá dưới dấu căn về bình phương của 1 số sao đó bỏ dấu căn ( đừng quên đk của x nhé )
bn lm giúp mk đc k?