K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

ĐK:....

\(\sqrt{x+\sqrt{x+11}}+\sqrt{x-\sqrt{x+11}}=4\)

\(\Leftrightarrow\left(\sqrt{x+\sqrt{x+11}}+\sqrt{x-\sqrt{x+11}}\right)\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)=4\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)\)

\(\Leftrightarrow x+\sqrt{x+11}-x+\sqrt{x+11}=4\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)\)

\(\Leftrightarrow2\sqrt{x+11}=4\sqrt{x+\sqrt{x+11}}-4\sqrt{x-\sqrt{x+11}}\)

\(\Leftrightarrow2\left(\sqrt{x+\sqrt{x+11}}-\sqrt{x-\sqrt{x+11}}\right)=\sqrt{x+11}\)

\(\Leftrightarrow4\left(x+\sqrt{x+11}+x-\sqrt{x+11}-2\sqrt{\left(x+\sqrt{x+11}\right)\left(x-\sqrt{x+11}\right)}\right)=x+11\)

\(\Leftrightarrow4\left(2x-2\sqrt{x^2-x-11}\right)=x+11\)

\(\Leftrightarrow8x-8\sqrt{x^2-x-11}=x+11\)

\(\Leftrightarrow8\sqrt{x^2-x-11}=7x-11\)

\(\Leftrightarrow64\left(x^2-x-11\right)=\left(7x-11\right)^2\)

\(\Leftrightarrow64x^2-64x-704=49x^2-154x+121\)

\(\Leftrightarrow15x^2+90x-825=0\)

\(\Leftrightarrow15x^2-75x+165x-825=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\left(chon\right)\\x=-11\left(loai\right)\end{matrix}\right.\)

Vậy...

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

ĐK:.............

Đặt $\sqrt{2x^2+x+6}=a; \sqrt{x^2+x+2}=b$ với $a,b\geq 0$ thì PT trở thành:

$a+b=\frac{a^2-b^2}{x}$

$\Leftrightarrow (a+b)(\frac{a-b}{x}-1)=0$

Nếu $a+b=0$ thì do $a,b\geq 0$ nên $a=b=0$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}=0$ (vô lý)

Nếu $\frac{a-b}{x}-1=0$

$\Leftrightarrow a-b=x$

$\Leftrightarrow \sqrt{2x^2+x+6}=\sqrt{x^2+x+2}+x$

$\Rightarrow 2x^2+x+6=2x^2+x+2+2x\sqrt{x^2+x+2}$ (bình phương 2 vế)

$\Leftrightarrow 2=x\sqrt{x^2+x+2}(1)$

$\Rightarrow 4=x^2(x^2+x+2)$

$\Leftrightarrow x^4+x^3+2x^2-4=0$

$\Leftrightarrow (x-1)(x^3+2x^2+4x+4)=0$

Từ $(1)$ ta có $x>0$. Do đó $x^3+2x^2+4x+4>0$ nên $x-1=0$

$\Rightarrow x=1$Vậy..........

 

6 tháng 8 2020

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\left(đk:x\ge11\right)\)

Đặt \(\sqrt{x-11}=t\left(t\ge0\right)\)Khi đó pt trở thành :

\(\sqrt{x+t}+\sqrt{x-t}=4\)

\(< =>x+t+x-t+2\sqrt{x^2-t^2}=4\)

\(< =>2x+2\sqrt{x^2-x-11}=4\)

\(< =>x+\sqrt{x^2-x-11}=4\)

\(< =>x^2-x-11=\left(4-x\right)^2\)

\(< =>x^2-x-11=16-8x+x^2\)

\(< =>x^2-x-11-16+8x-x^2=0\)

\(< =>7x-27=0< =>x=\frac{27}{7}\left(ktmđk\right)\)

Vậy phương trình trên vô nghiệm

6 tháng 8 2020

Chỗ \(2x+2\sqrt{x^2-x-11}\)=4

suy ra \(x+\sqrt{x^2-x-11}\)=2 chứ sao bằng 4 bạn

tới đó thì mình làm được rồi cảm ơn bạn

12 tháng 8 2017

ĐK: x \(\ge11\)

\(\sqrt{x+\sqrt{x-11}}+\sqrt{x-\sqrt{x-11}}=4\Leftrightarrow2x+2\sqrt{x^2-x+11}=16\Leftrightarrow\sqrt{x^2-x+11}=8-x\) ( x \(\le8\) ) \(\Leftrightarrow x^2-x+11=\left(8-x\right)^2\Leftrightarrow x^2-x+11=64-16x+x^2\Leftrightarrow15x-53=0\Leftrightarrow x=\dfrac{53}{15}\) (ktmđk)

Vậy phương trình vô nghiệm

12 tháng 8 2017

tks cậu

25 tháng 6 2018

a, \(\left(\sqrt{x-1}-2\right)^2+\)\(\left(\sqrt{x-1}-3\right)^2\)

xog xét 2 TH

b, bình phương 

2

GTLN : 2 dấu = xra \(2\le x\le4\)

27 tháng 6 2018

Hà Thị Thế pạn làm ra lun giúp mjk dx k ạ

28 tháng 3 2022

I my va li it so ceut

30 tháng 3 2022

`Answer:`

a) \(\left(\sqrt{2}+1\right)x-\sqrt{2}=2\)

\(\Leftrightarrow\left(\sqrt{2}+1\right)x=2+\sqrt{2}\)

\(\Leftrightarrow x=\frac{2+\sqrt{2}}{\sqrt{2}+1}\)

\(\Leftrightarrow x=\frac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}\)

\(\Leftrightarrow x=\sqrt{2}\)

b) \(x^4+x^2-6=0\)

\(\Leftrightarrow x^4+3x^2-2x^2-6=0\)

\(\Leftrightarrow x^2.\left(x^2+3\right)-2\left(x^2+3\right)=0\)

\(\Leftrightarrow\left(x^2-2\right)\left(x^2+3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{2}\\x^2=-3\text{(Vô lý)}\end{cases}}}\)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)