K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2022

a. \(\sqrt{x^2+1}=4\)

\(\Leftrightarrow x^2+1=16\)

\(\Leftrightarrow x^2=15\)

\(\Leftrightarrow x=\pm\sqrt{15}\)

b. \(\sqrt{x^2+5x+20}=4\)

\(\Leftrightarrow x^2+5x+20=16\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

c. \(x-5\sqrt{x}+4=0\)

Đặt \(t=\sqrt{x}\ge0\)

\(\Rightarrow t^2-5t+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=4\\t=1\end{matrix}\right.\) (TM)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)

d. \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=8\)

\(\Leftrightarrow x+3\sqrt{x}+\sqrt{x}+3=8\)

\(\Leftrightarrow x+4\sqrt{x}-5=0\)

Tương tự câu c ta được: \(\left[{}\begin{matrix}x=1\left(TM\right)\\x=-1\left(KTM\right)\end{matrix}\right.\)

DD
22 tháng 6 2022

a) \(\sqrt{x^2+1}=4\)

\(\Leftrightarrow x^2+1=16\)

\(\Leftrightarrow x^2=15\)

\(\Leftrightarrow x=\pm\sqrt{15}\)

b) \(\sqrt{x^2+5x+20}=4\)

\(\Leftrightarrow x^2+5x+20=16\)

\(\Leftrightarrow x^2+5x+4=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\end{matrix}\right.\)

c) \(x-5\sqrt{x}+4=0\)(ĐK: \(x\ge0\))

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=16\end{matrix}\right.\)(thỏa mãn) 

d) \(\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)=8\)(ĐK: \(x\ge0\))

\(\Leftrightarrow x+4\sqrt{x}-5=0\)

\(\Leftrightarrow\left(\sqrt{x}+5\right)\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow x=1\) (thỏa mãn) 

 

13 tháng 11 2016

6/ Đặt \(\hept{\begin{cases}\sqrt[4]{x}=a\\\sqrt[4]{2-x}=b\end{cases}}\)

\(\Rightarrow b^4+a^4=2\)

Từ đó ta có: a + b = 2

Ta có: \(a^4+b^2\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(a+b\right)^4}{8}=\frac{16}{8}=2\)

Dấu = xảy ra khi a = b = 1

=> x = 1

17 tháng 1 2017

Nhìn không đủ chán rồi không dám động vào

17 tháng 1 2017

Viết đề kiểu gì v @@

21 tháng 7 2017

Điều kiện xác định bạn tự tìm

a) \(\sqrt{x^2-4x+3}=x-2\Leftrightarrow\)\(\left(\sqrt{x^2-4x+3}\right)^2=\left(x-2\right)^2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\Leftrightarrow0=1\) vô lý

pt vô nghiệm

b) \(\sqrt{x^2-1}-\left(x^2-1\right)=0\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{cases}}\)

<=>\(\orbr{\begin{cases}\\\end{cases}}\begin{matrix}x=\pm1\\x=\pm\sqrt{2}\end{matrix}\)

c)\(\sqrt{x^2-4}-\left(x-2\right)=0\Leftrightarrow\sqrt{x-2}.\sqrt{x+2}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{cases}}\)

<=>x=2 còn cái kia vô nghiệm

bạn tự trình bày chi tiết nhé

20 tháng 7 2017

a) bình phương -> rút gọn-> giải nghiệm

b,c) chuyển những phần tử không có căn sang vế phải->bình phương->rút gọn->tìm nghiệm

2 tháng 1 2019

1.

a) \(\sqrt{3-2\sqrt{2}}+\sqrt{6-4\sqrt{2}}+\sqrt{9-4\sqrt{2}}=\sqrt{2-2\sqrt{2}+1}+\sqrt{4-2.2.\sqrt{2}+2}+\sqrt{8-2.2\sqrt{2}.1+1}=\sqrt{\left(\sqrt{2}\right)^2-2.\sqrt{2}.1+1^2}+\sqrt{2^2-2.2.\sqrt{2}+\left(\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}.1+1^2}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}+\sqrt{\left(2\sqrt{2}-1\right)^2}=\left|\sqrt{2}-1\right|+\left|2-\sqrt{2}\right|+\left|2\sqrt{2}-1\right|=\sqrt{2}-1+2-\sqrt{2}+2\sqrt{2}-1=2\sqrt{2}\)

b) \(\sqrt{\left(4+\sqrt{10}\right)^2}-\sqrt{\left(4-\sqrt{10}\right)^2}=\left|4+\sqrt{10}\right|-\left|4-\sqrt{10}\right|=4+\sqrt{10}-4+\sqrt{10}=2\sqrt{10}\)

c) \(\dfrac{1}{\sqrt{2013}-\sqrt{2014}}-\dfrac{1}{\sqrt{2014}-\sqrt{2015}}=\dfrac{\sqrt{2013}+\sqrt{2014}}{\left(\sqrt{2013}-\sqrt{2014}\right)\left(\sqrt{2013}+\sqrt{2014}\right)}-\dfrac{\sqrt{2014}+\sqrt{2015}}{\left(\sqrt{2014}-\sqrt{2015}\right)\left(\sqrt{2014}+\sqrt{2015}\right)}=\dfrac{\sqrt{2013}+\sqrt{2014}}{2013-2014}-\dfrac{\sqrt{2014}+\sqrt{2015}}{2014-2015}=-\left(\sqrt{2013}+\sqrt{2014}\right)+\sqrt{2014}+\sqrt{2015}=-\sqrt{2013}-\sqrt{2014}+\sqrt{2014}+\sqrt{2015}=\sqrt{2015}-\sqrt{2013}\)

2.

a) \(x^2-2\sqrt{5}x+5=0\Leftrightarrow x^2-2.x.\sqrt{5}+\left(\sqrt{5}\right)^2=0\Leftrightarrow\left(x-\sqrt{5}\right)^2=0\Leftrightarrow x-\sqrt{5}=0\Leftrightarrow x=\sqrt{5}\)Vậy S={\(\sqrt{5}\)}

b) ĐK:x\(\ge-3\)

\(\sqrt{x+3}=1\Leftrightarrow\left(\sqrt{x+3}\right)^2=1^2\Leftrightarrow x+3=1\Leftrightarrow x=-2\left(tm\right)\)

Vậy S={-2}

3.

a) \(A=\dfrac{x-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(x\sqrt{x}-1\right)}{x+\sqrt{x}+1}-\dfrac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\dfrac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)=\sqrt{x}\left(\sqrt{x}-1\right)-2\sqrt{x}-1+2\sqrt{x}+2=x-\sqrt{x}+1\)

b) Ta có \(A=x-\sqrt{x}+1=x-2\sqrt{x}.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

Ta có \(\left(\sqrt{x}-\dfrac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\Leftrightarrow A\ge\dfrac{3}{4}\)

Dấu bằng xảy ra khi x=\(\dfrac{1}{4}\)

Vậy GTNN của A=\(\dfrac{3}{4}\)

phân tích thành hằng đẳng thức (a-b)2