Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
a. \(x^2\left(y-1\right)+y^2\left(x-1\right)=1\)
<=> \(x^2y+y^2x-\left(x^2+y^2\right)=1\)
<=> \(xy\left(x+y\right)-\left(x+y\right)^2+2xy=1\)
Đặt: x + y = u; xy = v => u; v là số nguyên
Ta có: uv - \(u^2+2v=1\)
<=> \(u^2-uv-2v+1=0\)
<=> \(u^2+1=v\left(2+u\right)\)
=> \(u^2+1⋮2+u\)
=> \(u^2-4+5⋮2+u\)
=> \(5⋮2-u\)
=> 2 - u = 5; 2 - u = -5; 2- u = 1; 2- u = -1
Mỗi trường hợp sẽ tìm đc v
=> x; y
Nếu x=0, y =1, -1
-Nếu x khác 0,
- Nếu x lẻ, cộng 2 vế với 1
x^3 + x^2 + x + 1 = 4y^2 + 4y + 1
<=> (x^2 + 1)(x + 1) = (2y + 1)^2
x lẻ
x^2 + 1 chẵn
x + 1 chẵn
=> VT chẵn mà VP luôn lẻ => loại TH x lẻ
Xét x chẵn =>....tui thấy trên mạng nó lm tek này,,nhưng mà TH chẵn nó lm sai,,,
Vậy pt có 2 cặp nghiệm nguyên (0,1) và (0,-1)
ta có : \(x\left(x^2+x+1\right)=4y\left(y+1\right)\)
<=>\(x^3+x^2+x+1=4y^2+4y+1\)
<=>\(\left(x^2+1\right)\left(x+1\right)=\left(2y+1\right)^2\)
ta thấy : \(x^2+1\) và \(x+1\) cùng tính chẵn lẻ.Mà \(\left(2y+1\right)^2\) là bình phương của 1 số lẻ nên \(x^2+1\) và \(x+1\) cùng lẻ => x chẵn
mặt khác: tích \(\left(x^2+1\right)\left(x+1\right)\) là 1 số chính phương lẻ =>\(x^2+1=x+1\)
<=>\(x^2=x\) <=> x(x-1)=0 \(\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
mà x là số chẵn nên x=0 => 4y(y+1)=0 \(\Rightarrow\orbr{\begin{cases}y=0\\y+1=0\end{cases}\Rightarrow\orbr{\begin{cases}y=0\\y=-1\end{cases}}}\)
vậy nghiệm của phương trình là : (x;y)={ (0;0) ; (0;-1)}
Tại sao lại suy ra x2+1=x+1. Mình không hiểu chỗ đó giải thích cho mình với
\(\sqrt{2x+1}-\sqrt{3x}=x-1\)
ĐK: \(x\ge0\)
\(\sqrt{2x+1}-\sqrt{3x}=3x-\left(2x+1\right)\)
\(\Leftrightarrow\sqrt{2x+1}-\sqrt{3x}=\left(\sqrt{3x}-\sqrt{2x+1}\right)\left(\sqrt{3x}+\sqrt{2x+1}\right)\)
\(\Leftrightarrow\left(\sqrt{2x+1}-\sqrt{3x}\right)\left(1+\sqrt{3x}+\sqrt{2x+1}\right)=0\)
\(\Leftrightarrow\sqrt{2x+1}=\sqrt{3x}\Rightarrow x=1\left(tm\right)\)
câu 1,2 nhân 4 vào 2 vế đưa về dạng a2-b2=q(q là số nguyên) rồi tách thành phương trình ước số => tự giải tiếp
còn câu 3 tui hông nghĩ ra....