K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

\(x^2+2y^2-2xy+y=0\) đề phải như thế này chứ

12 tháng 11 2021

à, hình như tớ chép sai, vậy như thế làm thế nào vậy?

24 tháng 6 2019

\(2x^4-2x^2y+y^2-64=0.\)

\(x^4+x^4-2x^2y+y^2-64=0.\)

\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4=64.\)

Có \(\left(x^2-y\right)^2\ge0\)

mafk \(\left(x^2-y\right)^2+x^4=64.\)

\(\Rightarrow x^4\le64.\)

\(\Rightarrow x^2\le8\)

Từ đó xét tiếp 

20 tháng 11 2017

thiếu đề bài

20 tháng 11 2017

ta có vt = (x - y)2 + ( x + x )+z = 12

ta có chính phương <= 12 là các số 1,4,9 ta tháy bộ 3 số chính phương cọng lại bằng 12  chỉ co ( 4 , 4 ,4 ) vậy ta có hệ

( x - y )= z2 =4

pần còn lại bạn tự giải nha

15 tháng 11 2016

chuyển vế rồi lên google search: wolfram alpha.com.vn

nó cho cách làm với kết quả đó :V

16 tháng 11 2016

có ra ko :V

17 tháng 9 2020

\(A=2x^2-2x+9-2xy+y^2\)

\(\Leftrightarrow A=\left(x^2-2x+1\right)+\left(x^2-2xy+y^2\right)+8\)

\(\Leftrightarrow A=\left(x-1\right)^2+\left(x-y\right)^2+8\)

Vì \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(x-y\right)^2\ge0\forall x;y\end{cases}}\)=> \(A=\left(x-1\right)^2+\left(x-y\right)^2+8\ge8\)

Dấu "=" xảy ra <=> \(\orbr{\begin{cases}\left(x-1\right)^2=0\\\left(x-y\right)^2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=1\\x-y=0\end{cases}}\Leftrightarrow x=y=1\)

Vậy MinA = 8 <=> x = y = 1