K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2019

\(2x^4-2x^2y+y^2-64=0.\)

\(x^4+x^4-2x^2y+y^2-64=0.\)

\(\left(x^4-2x^2y+y^2\right)+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4-64=0.\)

\(\left(x^2-y\right)^2+x^4=64.\)

Có \(\left(x^2-y\right)^2\ge0\)

mafk \(\left(x^2-y\right)^2+x^4=64.\)

\(\Rightarrow x^4\le64.\)

\(\Rightarrow x^2\le8\)

Từ đó xét tiếp 

6 tháng 9 2021

a) x2+y2-4x+4y+8=0

⇔ (x-2)2+(y+2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)

b)5x2-4xy+y2=0

⇔ x2+(2x-y)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

c)x2+2y2+z2-2xy-2y-4z+5=0

⇔ (x-y)2+(y-1)2+(z-2)2=0

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)

b: Ta có: \(5x^2-4xy+y^2=0\)

\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)

\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)

\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)

9 tháng 7 2018

Bài 1 :

\(e,x^2+2xy+y^2-2x-2y+1\)

\(=\left(x+y-1\right)^2\)

Bài 2:

\(b,2x^3+3x^2+2x+3=0\)

\(\Leftrightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Leftrightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Leftrightarrow\left(x^2+1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\left(x^2+1>0\right)\)

\(\Leftrightarrow x=-\dfrac{3}{2}\)