\(2\sqrt[3]{x+1}-3\sqrt{x-1}=\sqrt[6]{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Đặt \(t=\sqrt{x}+\sqrt{1-x}\)\(\Rightarrow t^2=1+2\sqrt{x\left(1-x\right)}\)(\(t\ge0\))

\(pt:1+\frac{2}{3}\sqrt{x\left(1-x\right)}=\sqrt{x}+\sqrt{1-x}\)(\(0\le x\le1\))

\(\Leftrightarrow\frac{1}{3}\left(1+2\sqrt{x\left(1-x\right)}\right)+\frac{2}{3}=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow\frac{1}{3}t^2+\frac{2}{3}=t\)

\(\Leftrightarrow t^2+2-3t=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1=\sqrt{x}+\sqrt{1-x}\\2=\sqrt{x}+\sqrt{1-x}\end{matrix}\right.\)

TH1:\(1=\sqrt{x}+\sqrt{1-x}\Leftrightarrow1=1+\sqrt{x\left(1-x\right)}\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

TH2:\(2=\sqrt{x}+\sqrt{1-x}\Leftrightarrow4=1+\sqrt{x\left(1-x\right)}\Leftrightarrow3=\sqrt{x\left(1-x\right)}\)

\(-x^2+x-9=0\)(vô nghiệm)

Vậy pt có nghiệm x = 0 , x = 1 .

6 tháng 11 2018

Người đi hỏi có thể gợi ý câu mình hỏi cơ à, ngầu vậy :)

ĐKXĐ: \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

Đặt \(\sqrt[3]{x+1}=a;\sqrt[3]{x-1}=b\)

Ta có hệ: \(\left\{{}\begin{matrix}a-b=\sqrt{ab}\\a^3-b^3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2-3ab+b^2=0\\a^3-b^3=2\end{matrix}\right.\)

Quy về hệ đối xứng loại 1 rồi đó, S P mà giải

NV
10 tháng 8 2020

ĐKXĐ: \(x\ge-\frac{1}{2}\)

Đặt \(\left\{{}\begin{matrix}x+1=a>0\\\sqrt{2x+1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a+b=\sqrt{3a^2+b^2}\)

\(\Leftrightarrow a^2+2ab+b^2=3a^2+b^2\)

\(\Leftrightarrow a^2-ab=0\Rightarrow\left[{}\begin{matrix}a=0\left(l\right)\\a=b\end{matrix}\right.\)

\(\Leftrightarrow x+1=\sqrt{2x+1}\)

\(\Leftrightarrow x^2+2x+1=2x+1\)

\(\Leftrightarrow x=0\)

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

ĐK: $x\geq 0$

Đặt $\sqrt{x+1}=a; \sqrt{x}=b$. ĐK $a,b\geq 0$ thì ta có:

$a-b-ab=a^2-2b^2$

$\Leftrightarrow a-b=a^2+ab-2b^2=(a-b)(a+2b)$

$\Leftrightarrow (a-b)(a+2b-1)=0$

$\Leftrightarrow a=b$ hoặc $a+2b=1$

Nếu $a=b\Rightarrow a^2=b^2\Leftrightarrow x+1=x$ (vô lý)

Nếu $a+2b=1$

$\Leftrightarrow \sqrt{x+1}-1+2\sqrt{x}=0$

$\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+2\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}(\frac{\sqrt{x}}{\sqrt{x+1}+1}+2)=0$

Dễ thấy biểu thức trong ngoặc lớn hơn $0$ nên \sqrt{x}=0$

$\Leftrightarrow x=0$

Vậy.......