K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

Đặt \(t=\sqrt{x}+\sqrt{1-x}\)\(\Rightarrow t^2=1+2\sqrt{x\left(1-x\right)}\)(\(t\ge0\))

\(pt:1+\frac{2}{3}\sqrt{x\left(1-x\right)}=\sqrt{x}+\sqrt{1-x}\)(\(0\le x\le1\))

\(\Leftrightarrow\frac{1}{3}\left(1+2\sqrt{x\left(1-x\right)}\right)+\frac{2}{3}=\sqrt{x}+\sqrt{1-x}\)

\(\Leftrightarrow\frac{1}{3}t^2+\frac{2}{3}=t\)

\(\Leftrightarrow t^2+2-3t=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}1=\sqrt{x}+\sqrt{1-x}\\2=\sqrt{x}+\sqrt{1-x}\end{matrix}\right.\)

TH1:\(1=\sqrt{x}+\sqrt{1-x}\Leftrightarrow1=1+\sqrt{x\left(1-x\right)}\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

TH2:\(2=\sqrt{x}+\sqrt{1-x}\Leftrightarrow4=1+\sqrt{x\left(1-x\right)}\Leftrightarrow3=\sqrt{x\left(1-x\right)}\)

\(-x^2+x-9=0\)(vô nghiệm)

Vậy pt có nghiệm x = 0 , x = 1 .

28 tháng 3 2020

a) \(4\sqrt{x}+\frac{2}{\sqrt{x}}< 2x+\frac{1}{2x}+2\)

hay \(2\sqrt{x}+\frac{1}{\sqrt{x}}< x+\frac{1}{4x}+1\)

\(\Leftrightarrow0< x+\frac{1}{4x}+1-2\sqrt{x}-\frac{1}{\sqrt{x}}\)

\(\Leftrightarrow0< \left(\sqrt{x}\right)^2-2\sqrt{x}-2\sqrt{x}\cdot1+1+\frac{1}{\left(2\sqrt{x}\right)^2}-2\cdot\frac{1}{2\sqrt{x}}\)

\(\Leftrightarrow1< \left(\sqrt{x}-1\right)^2+\left(\frac{1}{2\sqrt{x}}-1\right)^2\)

\(\Rightarrow\hept{\begin{cases}x>0\\\sqrt{x}>1\\2\sqrt{x}>1\end{cases}\Rightarrow\hept{\begin{cases}x>1\\x>\frac{1}{4}\end{cases}\Rightarrow}x>1}\)

b) \(\frac{1}{1-x^2}>\frac{3}{\sqrt{1-x^2}}-1\left(1\right)\left(ĐK:-1< x< 1\right)\)

Ta có (1) <=> \(\frac{1}{1-x^2}-1-\frac{3x}{\sqrt{1-x^2}}+2>0\)\(\Leftrightarrow\frac{x^2}{1-x^2}-\frac{3x}{\sqrt{1-x^2}}+2>0\)

Đặt \(t=\frac{x}{\sqrt{1-x^2}}\)ta được

\(t^2-3t+2>0\Leftrightarrow\orbr{\begin{cases}\frac{x}{\sqrt{1-x^2}}< 1\\\frac{x}{\sqrt{1-x^2}}>2\end{cases}\Leftrightarrow\orbr{\begin{cases}\sqrt{1-x^2}>x\left(a\right)\\2\sqrt{1-x^2}< x\left(b\right)\end{cases}}}\)

(a) <=> \(\hept{\begin{cases}x< 0\\1-x^2>0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0\\1-x^2>x^2\end{cases}}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(\hept{\begin{cases}x\ge0\\x^2< \frac{1}{2}\end{cases}}\)

\(\Leftrightarrow-1< x< 0\)hoặc \(0\le x\le\frac{\sqrt{2}}{2}\Leftrightarrow-1< x< \frac{\sqrt{2}}{2}\)

(b) \(\Leftrightarrow\hept{\begin{cases}1-x^2>0\\x>0\\4\left(1-x^2\right)< x^2\end{cases}\Leftrightarrow\hept{\begin{cases}0< x< 1\\x^2>\frac{4}{5}\end{cases}\Leftrightarrow}\frac{2}{\sqrt{5}}< x< 1}\)

28 tháng 3 2020

ok đợi nấu ăn xong r làm cho

AH
Akai Haruma
Giáo viên
30 tháng 10 2020

Lời giải:

ĐK: $x\geq 0$

Đặt $\sqrt{x+1}=a; \sqrt{x}=b$. ĐK $a,b\geq 0$ thì ta có:

$a-b-ab=a^2-2b^2$

$\Leftrightarrow a-b=a^2+ab-2b^2=(a-b)(a+2b)$

$\Leftrightarrow (a-b)(a+2b-1)=0$

$\Leftrightarrow a=b$ hoặc $a+2b=1$

Nếu $a=b\Rightarrow a^2=b^2\Leftrightarrow x+1=x$ (vô lý)

Nếu $a+2b=1$

$\Leftrightarrow \sqrt{x+1}-1+2\sqrt{x}=0$

$\Leftrightarrow \frac{x}{\sqrt{x+1}+1}+2\sqrt{x}=0$

$\Leftrightarrow \sqrt{x}(\frac{\sqrt{x}}{\sqrt{x+1}+1}+2)=0$

Dễ thấy biểu thức trong ngoặc lớn hơn $0$ nên \sqrt{x}=0$

$\Leftrightarrow x=0$

Vậy.......

3 tháng 12 2019

Chương 1: MỆNH ĐỀ, TẬP HỢP

13 tháng 8 2019

1.A sai đề ?

1.B : \(x^2+x+6+2x\sqrt{x+3}=4\left(x+\sqrt{x+3}\right)\)

\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}=4x+4\sqrt{x+3}\)

\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}-4x-4\sqrt{x+3}=0\)

\(\Leftrightarrow x^2-3x+6+2x\sqrt{x+3}-4\sqrt{x+3}=0\)

\(\Leftrightarrow x^2-3x+6+2\sqrt{x+3}\left(x-2\right)=0\)

\(\Leftrightarrow x+3+2\sqrt{x+3}\left(x-2\right)+\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(\sqrt{x+3}+x-2\right)^2-1=0\)

\(\Leftrightarrow\left(\sqrt{x-3}+x-3\right)\left(\sqrt{x-3}+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}+x-3=0\\\sqrt{x-3}+x-1=0\end{matrix}\right.\)

Đến đây dễ rồi

Đáp án : \(\left[{}\begin{matrix}x=3\\x=\varnothing\end{matrix}\right.\)

2.A đang nghĩ

2.B

Áp dụng bất đẳng thức Cô-si :

\(\frac{x}{\sqrt{4x-1}}+\frac{\sqrt{4x-1}}{x}\ge2\sqrt{\frac{x\left(\sqrt{4x-1}\right)}{\left(\sqrt{4x-1}x\right)}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{\sqrt{4x-1}}=\frac{\sqrt{4x-1}}{x}\)

\(\Leftrightarrow x^2=4x-1\)

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow x=2\pm\sqrt{3}\)( thỏa )

Vậy....

13 tháng 8 2019

mấy bài này thuộc toán 9 nâng cao