Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.A sai đề ?
1.B : \(x^2+x+6+2x\sqrt{x+3}=4\left(x+\sqrt{x+3}\right)\)
\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}=4x+4\sqrt{x+3}\)
\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}-4x-4\sqrt{x+3}=0\)
\(\Leftrightarrow x^2-3x+6+2x\sqrt{x+3}-4\sqrt{x+3}=0\)
\(\Leftrightarrow x^2-3x+6+2\sqrt{x+3}\left(x-2\right)=0\)
\(\Leftrightarrow x+3+2\sqrt{x+3}\left(x-2\right)+\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x+3}+x-2\right)^2-1=0\)
\(\Leftrightarrow\left(\sqrt{x-3}+x-3\right)\left(\sqrt{x-3}+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}+x-3=0\\\sqrt{x-3}+x-1=0\end{matrix}\right.\)
Đến đây dễ rồi
Đáp án : \(\left[{}\begin{matrix}x=3\\x=\varnothing\end{matrix}\right.\)
2.A đang nghĩ
2.B
Áp dụng bất đẳng thức Cô-si :
\(\frac{x}{\sqrt{4x-1}}+\frac{\sqrt{4x-1}}{x}\ge2\sqrt{\frac{x\left(\sqrt{4x-1}\right)}{\left(\sqrt{4x-1}x\right)}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{\sqrt{4x-1}}=\frac{\sqrt{4x-1}}{x}\)
\(\Leftrightarrow x^2=4x-1\)
\(\Leftrightarrow x^2-4x+1=0\)
\(\Leftrightarrow x=2\pm\sqrt{3}\)( thỏa )
Vậy....
Đặt \(t=\sqrt{x}+\sqrt{1-x}\)\(\Rightarrow t^2=1+2\sqrt{x\left(1-x\right)}\)(\(t\ge0\))
\(pt:1+\frac{2}{3}\sqrt{x\left(1-x\right)}=\sqrt{x}+\sqrt{1-x}\)(\(0\le x\le1\))
\(\Leftrightarrow\frac{1}{3}\left(1+2\sqrt{x\left(1-x\right)}\right)+\frac{2}{3}=\sqrt{x}+\sqrt{1-x}\)
\(\Leftrightarrow\frac{1}{3}t^2+\frac{2}{3}=t\)
\(\Leftrightarrow t^2+2-3t=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}1=\sqrt{x}+\sqrt{1-x}\\2=\sqrt{x}+\sqrt{1-x}\end{matrix}\right.\)
TH1:\(1=\sqrt{x}+\sqrt{1-x}\Leftrightarrow1=1+\sqrt{x\left(1-x\right)}\)\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
TH2:\(2=\sqrt{x}+\sqrt{1-x}\Leftrightarrow4=1+\sqrt{x\left(1-x\right)}\Leftrightarrow3=\sqrt{x\left(1-x\right)}\)
\(-x^2+x-9=0\)(vô nghiệm)
Vậy pt có nghiệm x = 0 , x = 1 .
a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)
\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)
\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)
Ta có:
\(\Rightarrow t^2+3t-10=0\)
\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)
thay \(t=2\) vào (1), ta có :
\(\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)
\(\Rightarrow x_1=1;x_2=-4\)
vậy phương trình có 3 nghiệm x1 = 1, x2 = -4
b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)
Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)
ta có :...............
mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à