Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(4x-3\right)^3+\left(3x-2\right)^3=\left(7x-5\right)^3\)
\(\Leftrightarrow64x^3-144x^2+108x-27+27x^3-54x^2+36x-8=343x^3-735x^2+525x-125\)
\(\Leftrightarrow-252x^3+537x^2-381x+90=0\)
\(\Leftrightarrow-3\left(84x^3-179x^2+127-30\right)=0\)
\(\Leftrightarrow-3\left(7x-5\right)\left(3x-2\right)\left(4x-3\right)=0\)
\(\Leftrightarrow x\in\left\{\frac{5}{7};\frac{2}{3};\frac{3}{4}\right\}\)
b) \(x^3-2x^2-x-6=0\)
\(\Leftrightarrow x^3-3x^2+x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2\left(x-3\right)+x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+x+2\right)=0\)
Vì \(x^2+x+2>0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy....
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+7x^2+7x\right)+2=0\)
\(\Leftrightarrow x\left(2x^2+7x+7+2\right)=0\)
\(\Leftrightarrow x\left(2x^2+7x+9\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x+3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+6x\right)+\left(3x+9\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{3}{2}\end{matrix}\right.\)
chúc bạn học tốt!
Đặt \(a=x^2+3x-4;b=3x^2+7x+4\)
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+4\right)\left(x-1\right)=0\\\left(3x+4\right)\left(x+1\right)=0\\2x\left(2x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-4;1;-\dfrac{4}{3};-1;0;-\dfrac{5}{2}\right\}\)
x=-4, x=-5/2, x=-4/3, x=-1, x=0, x=1
bậc to quá nghĩ cách giải đã
a/ Đặt : \(\left\{{}\begin{matrix}a=4x-3\\b=3x-2\end{matrix}\right.\) \(\Leftrightarrow a+b=7x-5\)
Thay vào pt ta dc :
\(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow a^3+b^3=a^3+3a^2b+3ab^2+b^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\\a+b=0\end{matrix}\right.\)
+) \(a=0\Leftrightarrow4x-3=0\Leftrightarrow x=\dfrac{3}{4}\)
+) \(b=0\Leftrightarrow3x-2=0\Leftrightarrow x=\dfrac{2}{3}\)
+) \(c=0\Leftrightarrow7x-3=0\Leftrightarrow x=\dfrac{3}{7}\)
Vậy...
b/ \(x^3-2x^2-x-6=0\)
\(\Leftrightarrow x^3-3x^2+x^2-3x+2x-6=0\)
\(\Leftrightarrow x^2\left(x-3\right)+x\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}\right]=0\)
Mà \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy..
a) (4x - 3)3 + (3x - 2)3 = (7x - 5)3
\(\Leftrightarrow\) (4x - 3)3 + (3x - 2)3 = (4x - 3)3 + (3x - 2)3 + 3(4x - 3)(3x - 2)(4x - 3 + 3x - 2)
\(\Leftrightarrow\) 3(4x - 3)(3x - 2)(7x - 5) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\\x=\dfrac{5}{7}\end{matrix}\right.\)
bạn tự kết luận nhé !
a, \(4x-3=2\left(x-3\right)\Leftrightarrow4x-3=2x-6\)
\(\Leftrightarrow2x=-3\Leftrightarrow x=-\frac{3}{2}\)
b, \(5x^2+x=0\Leftrightarrow x\left(5x+1\right)=0\Leftrightarrow x=-\frac{1}{5};x=0\)
c, \(\left(3x-5\right)\left(x+7\right)=0\Leftrightarrow x=-7;x=\frac{5}{3}\)
d, \(\frac{2}{x-3}-\frac{3}{x+3}=\frac{7x-1}{x^2-9}\)ĐK : \(x\ne\pm3\)
\(\Leftrightarrow\frac{2\left(x+3\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{7x-1}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x+6-3x+9=7x-1\Leftrightarrow-x+15=7x-1\)
\(\Leftrightarrow-8x=-16\Leftrightarrow x=2\)( tmđk )
e, \(\left(12x-1\right)\left(6x-1\right)\left(4x-1\right)\left(3x-1\right)=330\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-2\right)\left(12x-3\right)\left(12x-4\right)=330.24=7920\)
\(\Leftrightarrow\left(12x-1\right)\left(12x-4\right)\left(12x-2\right)\left(12x-3\right)=7920\)
\(\Leftrightarrow\left(144x^2-60x+4\right)\left(144x^2-60x+6\right)=7920\)
Đặt \(144x^2-60x+4=t\)
\(t\left(t+2\right)=7920\Leftrightarrow t^2+2t-7920=0\)
\(\Leftrightarrow\left(t-88\right)\left(t+90\right)=0\Leftrightarrow t=88;t=-90\)
suy ra :TH1 : \(144x^2-60x+4=88\Leftrightarrow12\left(12x+7\right)\left(x-1\right)=0\Leftrightarrow x=-\frac{7}{12};x=1\)
TH2 : \(144x^2-60x+4=-90\Leftrightarrow144x^2-60x+94=0\)
\(\Leftrightarrow x=\frac{5\pm3\sqrt{39}i}{24}\)
Tập xác định của phương trình
2
Rút gọn thừa số chung
3
Biệt thức
4
Biệt thức
5
Nghiệm
<=>(4x-3)3+(5-7x)3+(3x-8)3=-3(3x-8)(4x+3)(7x-5)
=>-3(3x-8)(4x+3)(7x-5)=0
Th1:-3(3x-8)=0
=>3x-8=0
=>3x=8
=>x=\(\frac{8}{3}\)
Th2:4x+3=0
=>4x=-3
=>x=\(-\frac{3}{4}\)
Th3:7x-5=0
=>7x=5
=x=\(\frac{5}{7}\)