Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x=-4, x=-5/2, x=-4/3, x=-1, x=0, x=1
bậc to quá nghĩ cách giải đã
a) \(\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
<=> \(9x^2-9x+2=9x^2+6x+1\)
<=> \(15x=1\) <=> \(x=\frac{1}{15}\)
b) \(\left(4x-1\right)\left(x+1\right)=\left(2x-3\right)^2\)
<=> \(4x^2+3x-1=4x^2-12x+9\)
<=> \(15x^2=10\) <=> \(x=\frac{2}{3}\)
c) \(\left(5x+1\right)^2=\left(7x-3\right)\left(7x+2\right)\) <=> \(25x^2+10x+1=49x^2-7x-6\)
<=> \(24x^2-17x-7=0\) <=> \(24x^2-24x+7x-7=0\)
<=> \(\left(24x+7\right)\left(x-1\right)=0\) <=> \(\orbr{\begin{cases}x=-\frac{7}{24}\\x=1\end{cases}}\)
d) (4 - 3x)(4 + 3x) = (9x - 3)(1 - x)
<=> 16 - 9x2 = 12x - 9x2 - 3
<=> 12x = 19
<=> x = 19/12
e) x(x + 1)(x + 2)(x + 3) = 24
<=> (x2 + 3x)(x2 + 3x + 2) = 24
<=> (x2 + 3x)2 + 2(x2 + 3x) - 24 = 0
<=> (x2 + 3x)2 + 6(x2 + 3x) - 4(x2 + 3x) - 24 = 0
<=> (x2 + 3x + 6)(x2 + 3x - 4) = 0
<=> \(\orbr{\begin{cases}x^2+3x+6=0\\x^2+3x-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+\frac{3}{2}\right)^2+\frac{15}{4}=0\left(vn\right)\\\left(x+4\right)\left(x-1\right)=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-4\\x=1\end{cases}}\)
g) (7x - 2)2 = (7x - 3)(7x + 2)
<=> 49x2 - 28x + 4 = 49x2 - 7x - 6
<=> 21x = 10 <=> x = 10/21
\(\left(8x^3-60x^2+150x-125\right)-\left(27x^3-108x^2+144x-64\right)+\left(x^3+3x^2+3x+1\right)=0\)
\(-18x^3+51x^2+9x-60=0\)
\(\left(2x-5\right)\left(x+1\right)\left(3x-4\right)=0\)
\(\left[\begin{array}{nghiempt}x=\frac{5}{2}\\x=-1\\x=\frac{4}{3}\end{array}\right.\)
\(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow\left(2x^3+7x^2+7x\right)+2=0\)
\(\Leftrightarrow x\left(2x^2+7x+7+2\right)=0\)
\(\Leftrightarrow x\left(2x^2+7x+9\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x+3x+9\right)=0\)
\(\Leftrightarrow x\left[\left(2x^2+6x\right)+\left(3x+9\right)\right]=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)+3\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+3=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{3}{2}\end{matrix}\right.\)
chúc bạn học tốt!
\(a,\left(3x-2\right)\left(3x-1\right)=\left(3x+1\right)^2\)
\(9x^2-3x-6x+2=9x^2+6x+1\)
\(-9x+2-6x-1=0\)
\(-15x+1=0\)
\(-15x=-1\)
\(x=\frac{1}{15}\)
a: \(\Leftrightarrow\left(3x+2\right)\left(5-x\right)=-9x^2+4\)
\(\Leftrightarrow\left(3x+2\right)\left(5-x\right)+\left(3x+2\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(2x+3\right)=0\)
=>x=-2/3 hoặc x=-3/2
b: \(\Leftrightarrow4x\left(x+5\right)+x^2-25=0\)
\(\Leftrightarrow\left(x+5\right)\left(5x-5\right)=0\)
=>x=-5 hoặc x=1
c: \(\Leftrightarrow3x\left(x-1\right)=\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)
=>x=1 hoặc x=-1/2
a) Mạn phép sửa đề :
x4 - 3x3 + 4x2 - 3x + 1 = 0
⇔ x4 - x3 - 2x3 + 2x2 + 2x2 - 2x - x + 1 = 0
⇔ x3( x - 1) - 2x2( x - 1) + 2x( x - 1) - ( x - 1) = 0
⇔ ( x - 1)( x3 - 2x2 + 2x - 1) = 0
⇔ ( x - 1)[ ( x - 1)(x2 + x + 1) - 2x( x - 1)] = 0
⇔ ( x - 1)2( x2 - x + 1) = 0
Do : x2 - x + 1 \(=x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\text{≥}\dfrac{3}{4}>0\text{∀}x\)
⇔ ( x - 1)2 = 0
⇔ x = 1
Vậy,....
b) 6x4 - x3 - 7x2 + x + 1 = 0
⇔ 6x4 + 6x3 - 7x3 - 7x2 + x + 1 = 0
⇔ 6x3( x + 1) - 7x2( x + 1) + x + 1 = 0
⇔ ( x + 1)( 6x3 - 7x2 + 1 ) = 0
⇔ ( x + 1)( 6x3 - 6x2 - x2 + 1 ) = 0
⇔ ( x + 1)[ 6x2( x - 1) -( x + 1)( x - 1)] = 0
⇔ ( x + 1)2( 6x2 - x - 1) = 0
⇔ ( x + 1)2( 6x2 - 3x + 2x - 1) = 0
⇔( x + 1)2[ 3x( 2x - 1) + 2x - 1] = 0
⇔( x + 1)2( 2x - 1)( 3x + 1) = 0
⇔ x = -1 ; x = \(\dfrac{1}{2}\) hoặc : x = \(\dfrac{-1}{3}\)
Vậy,....
Đặt \(a=x^2+3x-4;b=3x^2+7x+4\)
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x+4\right)\left(x-1\right)=0\\\left(3x+4\right)\left(x+1\right)=0\\2x\left(2x+5\right)=0\end{matrix}\right.\Leftrightarrow x\in\left\{-4;1;-\dfrac{4}{3};-1;0;-\dfrac{5}{2}\right\}\)