K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2019

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

AH
Akai Haruma
Giáo viên
23 tháng 12 2019

Lời giải:

PT $(1)\Leftrightarrow xy(x+y)=0$

\(\Rightarrow \left[\begin{matrix} x=0\\ y=0\\ x=-y\end{matrix}\right.\)

Nếu $x=0$. Thay vào PT $(2)$ ta có:\(2y^2=1\Rightarrow y=\pm \sqrt{\frac{1}{2}}\)

Nếu $y=0$. Thay vào PT $(2)$ ta có: \(2x^2=1\Rightarrow x=\pm \sqrt{\frac{1}{2}}\)

Nếu $x=-y$. Thay vào PT $(2)$ ta có:

\(2(-y)^2+3(-y)y+2y^2=1\)

\(\Leftrightarrow y^2=1\Rightarrow y=\pm 1\Rightarrow x=\mp 1\)

Vậy $(x,y)=(1;-1); (-1;1); (0; \pm \sqrt{\frac{1}{2}}); (\pm \sqrt{\frac{1}{2}}; 0)$

16 tháng 5 2018

Hỏi đáp Toán

16 tháng 8 2016

1)Thấy: x=0;y=0 không phải là nghiệm của hệ.

\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)

Trừ vế theo vế hai phương trình,đc:

\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)

\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:

\(26x^4-426x^2-1728=0\)

\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé oaoa

 

16 tháng 8 2016

lần sau bn đăng ít 1 thôi nhé

9 tháng 12 2018

\(\left\{{}\begin{matrix}xy+x^2=1+y\\xy+y^2=1+x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-y^2=y-x\\xy+x^2=1+y\end{matrix}\right.\) ( lấy trên trừ dưới )

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y\right)+\left(x-y\right)=0\\xy+x^2=1+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)\left(x+y+1\right)=0\\xy+x^2=1+y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=y\\x+y=-1\end{matrix}\right.\\xy+x^2=1+y\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\xy+x^2=1+y\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-1\\xy+x^2=1+y\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\x^2+x^2=1+x\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-1\\x\left(x+y\right)-y-1=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=y\\2x^2-x-1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x+y=-1\\-x-y-1=0\end{matrix}\right.\end{matrix}\right.\)

ta có \(\left\{{}\begin{matrix}x+y=-1\\-x-y-1=0\end{matrix}\right.\left(đúng\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=y\\\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\)

vậy

3 tháng 12 2019

từ pt trên tính x theo y hoặc y theo x r thay vào pt dưới

7 tháng 7 2019

a) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+29-1\right)\left(x^2-11x+29+1\right)=1680\\ \)

Đặt \(x^2-11x+29=t\), ta đc \(\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1=1680\Leftrightarrow t^2=1681\Leftrightarrow t=\pm41\)

Với \(t=41\Leftrightarrow x^2-11x+28=40\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)

Với \(t=-41\Leftrightarrow x^2-11x+30=-40\)(vô no)

Vậy.....

7 tháng 7 2019

c) \(x^4-7x^3+14x^2-7x+1=0\\ \Leftrightarrow x^2-7x+14-\frac{7}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+14=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

Ta đc \(t^2-2-7t+14=0\Leftrightarrow t^2-7t+12=0\)

\(\Rightarrow\left[{}\begin{matrix}t=4\\t=3\end{matrix}\right.\)

B tự giải tiếp nha