\(\hept{\begin{cases}x^2+x+\frac{1}{y}\left(1+\frac{1}{y}\right)=4\\x^3+\f...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

câu a) sáng giải

b) \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}=\frac{4^2}{2}=8>4\) vô nghiệm 

14 tháng 7 2019

a) ĐK: \(x,y\ne-1\)

\(\hept{\begin{cases}x^2+y^2+x+y=\left(x+1\right)\left(y+1\right)\left(1\right)\\\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2=1\left(2\right)\end{cases}}\)

(1) \(\Leftrightarrow\)\(\frac{x^2+x}{\left(x+1\right)\left(y+1\right)}+\frac{y^2+y}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(y+1\right)}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(\frac{x}{y+1}+\frac{y}{x+1}=1\) (3) 

(2) \(\Leftrightarrow\)\(\left(\frac{x}{y+1}+\frac{y}{x+1}\right)^2-\frac{2xy}{\left(x+1\right)\left(y+1\right)}=1\)

\(\Leftrightarrow\)\(2xy=\left(x+1\right)\left(y+1\right)\)

Lại có: \(\left(\frac{x}{y+1}\right)^2+\left(\frac{y}{x+1}\right)^2\ge2\sqrt{\left(\frac{xy}{\left(x+1\right)\left(y+1\right)}\right)^2}=2\sqrt{\frac{1}{4}}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{x}{y+1}=\frac{y}{x+1}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{2x}{y+1}=1\\2\left(\frac{x}{y+1}\right)^2=1\end{cases}\Leftrightarrow\left(\frac{x}{y+1}\right)^2-\frac{x}{y+1}=0\Leftrightarrow\frac{x}{y+1}\left(\frac{x}{y+1}-1\right)=0}\)

\(\Rightarrow\)\(\orbr{\begin{cases}\frac{x}{y+1}=0\\\frac{x}{y+1}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0;y=1\\x=y+1\end{cases}\Leftrightarrow}x=y+1}\)

Thay x=y+1 vào (3) ta được: \(\frac{y}{x+1}=0\)\(\Leftrightarrow\)\(y=0\)\(\Rightarrow\)\(x=1\) ( tương tự với y ta cũng được x=0;y=1 ) 

tập nghiệm của pt \(\left(x,y\right)=\left\{\left(0;1\right),\left(1;0\right)\right\}\)

b) ĐK: \(x,y\ne0\) còn cách khác là dùng cosi nhé, VD: \(\hept{\begin{cases}x+\frac{1}{x}+y+\frac{1}{y}=4\left(1\right)\\\left(x+\frac{1}{2}\right)^2+\left(y+\frac{1}{y}\right)^2=4\left(2\right)\end{cases}}\)

lấy (1) + (2) và cộng 2 vào 2 vế của pt mới ta được: 

\(10=a^2+1+b^2+1+\left(a+b\right)\ge2\sqrt{a^2}+2\sqrt{a^2}+4=12\)

\(\Rightarrow\)\(10\ge12\) (vô lí) => hpt vô nghiệm 

16 tháng 2 2020

Từ hệ phương trình suy ra: \(4.14+\frac{14}{y}=1\)

\(\Rightarrow\frac{14}{y}=-55\Rightarrow y=\frac{-14}{55}\)

Thay y vào phương trình \(\frac{1}{x}+\frac{1}{y}=14\)giải được \(x=\frac{14}{251}\)

Vậy hệ có 1 nghiệm \(\left(\frac{14}{251};\frac{-14}{55}\right)\)

16 tháng 2 2020

dk \(x,y\ne0\)

thay \(\frac{1}{x}+\frac{1}{y}=14\) vao pt 2 ta duoc

\(4.14+\frac{14}{y}=1\Leftrightarrow56+\frac{14}{y}=1\Leftrightarrow y=\frac{-14}{55}\)

thay \(y=\frac{-14}{55}\)

vao pt 1 \(\Rightarrow\frac{1}{x}-\frac{55}{14}=14\Leftrightarrow x=\frac{14}{251}\)tmdk

thu lai ta thay thoa man 

vay \(\left\{x;y\right\}=\left\{\frac{14}{251};\frac{-14}{55}\right\}\)

1 tháng 8 2018

\(pt\Leftrightarrow\hept{\begin{cases}\frac{1}{2}xy+\frac{3}{2}x+y+3=\frac{1}{2}xy+50\\\frac{1}{2}xy-x-y+2=\frac{1}{2}xy-32\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\frac{3}{2}x+y=47\\-x-y=-34\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=26\\y=8\end{cases}}\)

Vậy pt có một nghiệm duy nhất (x;y) = (26;8).

31 tháng 12 2018

trừ cho nhau là xong

1 tháng 2 2019

Nói nghe có vẻ dễ ha Trần Hữu Ngọc Minh 

12 tháng 10 2020

sai lớp :>>>

12 tháng 10 2020

Rõ ràng \(x=y=z=0\)   là nghiệm của hệ

Với \(xyz\ne0\), Ta có

\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)

\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)

Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)

Từ pt thứ nhất của hệ suy ra 

\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)

Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)

Ta co:

\(\frac{x}{3}+\frac{y}{2}=\frac{1}{6}\)\(\Rightarrow\frac{2x}{6}+\frac{3y}{6}=\frac{1}{6}\)\(\Rightarrow2x+3y=1\Rightarrow x=\frac{1-3y}{2}\)

\(\Rightarrow\frac{3.\frac{1-3y}{2}}{4}-\frac{\frac{1-3y}{2}}{6}=2\)

\(\Rightarrow\frac{1-3y}{2}.\frac{3}{4}-\frac{1-3y}{2}.\frac{1}{6}=2\)

\(\Rightarrow\frac{1-3y}{2}.\left(\frac{3}{4}-\frac{1}{6}\right)=2\)

\(\Rightarrow\frac{1-3y}{2}.\frac{7}{12}=2\)

\(\Rightarrow\frac{1-3y}{2}=\frac{24}{7}\)

\(\Rightarrow7\left(1-3y\right)=2.24\)

\(\Rightarrow7-21y=48\)

\(\Rightarrow21y=-41\)

\(\Rightarrow y\approx-1,9\)

\(\Rightarrow x=\frac{1-3.\left(-1,9\right)}{2}=3.35\)

28 tháng 2 2018

1 slot tối làm cho.Giờ đi học đã =))

28 tháng 2 2018

\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)

\(\Rightarrow7\left(x+y+z\right)=42\)

\(\Leftrightarrow x+y+z=6\)