K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

1 slot tối làm cho.Giờ đi học đã =))

28 tháng 2 2018

\(\hept{\begin{cases}\frac{x}{3}+\frac{y}{12}-\frac{z}{4}=1\\\frac{x}{10}+\frac{y}{5}+\frac{z}{3}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}4x+y-3z=12\\3x+6y+10z=30\end{cases}}\)

\(\Rightarrow7\left(x+y+z\right)=42\)

\(\Leftrightarrow x+y+z=6\)

12 tháng 10 2020

sai lớp :>>>

12 tháng 10 2020

Rõ ràng \(x=y=z=0\)   là nghiệm của hệ

Với \(xyz\ne0\), Ta có

\(y=\frac{2x^2}{x^2+1}\le\frac{2x^2}{2x}=x\)

\(z=\frac{3y^3}{y^4+y^2+1}\le\frac{3y^3}{3y^2}=y\)

\(x=\frac{4z^4}{z^6+z^4+z^2+1}\le\frac{4z^4}{4z^3}=z\)

Suy ra \(y\le x\le z\le y\Rightarrow x=y=z\)

Từ pt thứ nhất của hệ suy ra 

\(\frac{2x^2}{x^2+1}=x\Leftrightarrow2x=1=x^2\)( vì \(x\ne0\))\(\Leftrightarrow x=1\)

Vậy hệ pt có hai nghiệm \(\left(0,0,0\right)\)và \(\left(1,1,1\right)\)

18 tháng 11 2018

tra loi cho mik

5 tháng 11 2018

Có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\)

\(\Rightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{3}\)

\(\Rightarrow3.\left(xy+yz+zx\right)=xyz\)(1)

Lại có: \(x+y+z=3\)

\(\Rightarrow\left(x+y+z\right)^2=3^2\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2zx=9\)

Mà: \(x^2+y^2+z^2=17\)

\(\Rightarrow17+2xy+2yz+2xz=9\)

\(\Rightarrow2xy+2yz+2xz=-8\)

\(\Rightarrow xy+yz+zx=-4\)(2)

Thay (2) vào (1) ta có:

\(3.\left(-4\right)=xyz\)

\(xyz=-12\)

Vậy \(xyz=-12\)

Tham khảo nhé~

8 tháng 3 2017

Ta có: 

\(\hept{\begin{cases}x+y+z=3\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\x^2+y^2+z^2=17\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\2\left(xy+yz+zx\right)=\frac{2xyz}{3}\\\left(x+y+z\right)^2=17+\frac{2xyz}{3}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+y+z=3\\xy+yz+zx=-4\\xyz=-12\end{cases}}\)

Từ đây ta có x, y, z sẽ là 3 nghiệm của phương trình

\(X^3-3X^2-4X+12=0\) 

\(\Leftrightarrow\left(X-3\right)\left(X-2\right)\left(X+2\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}X=3\\X=2\\X=-2\end{cases}}\)

Vậy các bộ x, y, z thỏa đề bài là: \(\left(x,y,z\right)=\left(-2,2,3;-2,3,2;2,-2,3;2,3,-2;3,2,-2;3,-2,2\right)\)

11 tháng 3 2017

?????????????????????????

13 tháng 5 2018

        \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)

\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)   (do x+y+z = 2015)

\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)

\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)

\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)

đến đây tự lm nốt nha

11 tháng 12 2019

x binh + y binh + z binh = 1

11 tháng 12 2019

Bạn giải chi tiết đc k?

5 tháng 1 2018

a, x^3-y^2-y=1/3

=> x^3 = y^2+y+1/3 = (y^2+y+1/4)+1/12 = (y+1/2)^2+1/12 > 0

=> x > 0 

Tương tự : y,z đều > 0

Tk mk nha

6 tháng 1 2018

ta có hpt

<=>\(\hept{\begin{cases}x^3=\left(y+\frac{1}{2}\right)^2+\frac{1}{12}\\y^3=\left(z+\frac{1}{2}\right)^2+\frac{1}{12}\\z^3=\left(x+\frac{1}{2}\right)^2+\frac{1}{12}\end{cases}}\)

Vì vai trò x,y,z như nhau và x,y,z đều >0 ( câu a)

Giả sử \(x\ge y\Rightarrow x^3\ge y^3\Rightarrow\left(y+\frac{1}{2}\right)^2\ge\left(z+\frac{1}{2}\right)^2\) (1)

=>\(y+\frac{1}{2}\ge z+\frac{1}{3}\)

=>\(y\ge z\) (2)

với y>= z, từ pt(2) =>z>=x (3)

Từ 91),(2),(3)

=> x=y=z>0 (ĐPCM)

Với x=y=z>0, thay vào pt(1), Ta có 

\(x^3-x^2-x-\frac{1}{3}=0\Leftrightarrow3x^3-3x^2-3x-1=0\)

<=>\(4x^3=x^3+3x^2+3x+1\Leftrightarrow4x^3=\left(x+1\right)^3\)

<=>\(\sqrt[3]{4}x=x+1\Leftrightarrow x\left(\sqrt[3]{4}-1\right)=1\Leftrightarrow x=\frac{1}{\sqrt[3]{4}-1}\)

Vãi cả lớp 8 học hệ pt , lạy mấy e rồi đó, :V

^_^