K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2015

+x = 0 thì pt (1) thành 0 = 1 (vô lí)

+Xét x khác 0.

\(pt\left(1\right)\Leftrightarrow2+3y=\frac{1}{x^3};\text{ }pt\left(2\right)\Leftrightarrow y^3=2+\frac{3}{x}\)

Đặt \(a=\frac{1}{x}\) thì hệ thành

\(2+3y=a^3;\text{ }2+3a=y^3\)

\(\Rightarrow2+3y+y^3=2+3a+a^3\Leftrightarrow a^3-y^3+3\left(a-y\right)=0\)

\(\Leftrightarrow\left(a-y\right)\left(a^2-ay+y^2+3\right)=0\)

\(\Leftrightarrow a=y\text{ (do }a^2-ay+y^2+3=\left(a-\frac{y}{2}\right)^2+\frac{3y^2}{4}+3>0\text{)}\)

Thay vào pt đầu ta có: \(a^3=3a+2\Leftrightarrow\left(a+1\right)^2\left(a-2\right)=0\Leftrightarrow a=-1\text{ hoặc }a=2\)

\(+a=-1\Rightarrow y=-1;\text{ }x=\frac{1}{a}=-1\)

\(+a=2\Rightarrow b=2;\text{ }x=\frac{1}{a}=\frac{1}{2}\)

Vậy tập nghiệm của hệ là \(S=\left\{\left(-1;-1\right);\left(\frac{1}{2};2\right)\right\}\)

9 tháng 11 2015

\(\int^{3x^2+2y^2-4xy+x+8y-4=0}_{x^2-y^2+2x+y-3=0}\) đề là vầy hả

18 tháng 10 2019

\(x^3-y^3=9< =>\left(x-y\right)^3+3xy\left(x-y\right)=9< =>3^3+3.xy.3=9< =>\)xy=-2

x-y =3 <=> x= y+ 3 => y(y+3) = -2 <=> y2 +3y +2 =0 <=> y= -1; x= y+3 = 2 hoặc y = -2; x= 1

vậy hệ có 2 nghiệm (x;y) = (2; -1); (1; -2)

26 tháng 2 2017

pt : 

\(2x^6-2x^3y+y^2=320\Leftrightarrow x^6+\left(x^6-2x^3y+y^2\right)=320\)

\(\Leftrightarrow x^6+\left(x^3-y\right)^2=320\)

=> \(x^6\le320\Leftrightarrow-2\le x\le2\)

TH1: Nếu \(x=-2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=\left(-2\right)^3+16=8\\y=x^3-16=\left(-2\right)^3-16=-24\end{cases}}\)

TH2: Nếu \(x=2\Rightarrow x^6=64\Rightarrow\left(x^3-y\right)^2=320-64=256\Rightarrow\orbr{\begin{cases}x^3-y=-16\\x^3-y=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=x^3+16=2^3+16=24\\y=x^3-16=2^3-16=-8\end{cases}}\)

TH3: Nếu \(\orbr{\begin{cases}x=-1\\x=1\end{cases}}\Rightarrow x^6=1\Rightarrow\left(x^3-y\right)^2=320-1=319\) (vô nghiệm nguyên)

TH4: Nếu \(x=0\Rightarrow x^6=0\Rightarrow\left(x^3-y\right)^2=320\)(vô nghiệm nguyên)

Vậy pt có nghiệm (x,y)=...

AH
Akai Haruma
Giáo viên
30 tháng 10 2024

Lời giải:

Áp dụng định lý Viet:

$x_1+x_2=\frac{-4}{2}=-2$

$x_1x_2=\frac{-1}{2}$

Khi đó:

$A=x_1x_2^3+x_1^3x_2=x_1x_2(x_1^2+x_2^2)$

$=x_1x_2[(x_1+x_2)^2-2x_1x_2]$

$=\frac{-1}{2}[(-2)^2-2.\frac{-1}{2}]=\frac{-5}{2}$

11 tháng 4 2019

ĐKXĐ: \(x\ge-1\)

Đặt \(\sqrt{x+1}=y\ge0\)

\(x^2+2x+2=3x\sqrt{x+1}\Leftrightarrow x^2+2\left(x+1\right)=3x\sqrt{x+1}\Leftrightarrow x^2+2y^2=3xy\)

\(\Leftrightarrow x^2-3xy+2y^2=0\Leftrightarrow x^2-xy-2xy+2y^2=0\Leftrightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0\Leftrightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\sqrt{x+1}\\x=\sqrt{x+1}\end{cases}}\)

Đến đây đơn giản rồi bạn giải từng trường hợp là ra

1 tháng 11 2017

Bạn ơi mình chưa học cài này nha

mong bạn thông cảm 

thanks

1 tháng 5 2018

a) Để phương trình có nghiệm kép thì \(\Delta=0\)

<=> \(m^2-4=0\)

<=> \(\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

+) Với m = 2 thì phương trình có nghiệm kép là   (-1)

+) Với m = -2 thì phương trình có nghiệm kép là  (1)

b) Có : \(\Delta=b^2-4ac=9-4.2.\left(-5\right)=49>0\)

Suy ra phương trình có 2 nghiệm phân biệt (x1;x2) là (5/2;-1)