K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 12 2019

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\\left(x+y\right)^2-3xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\3^2-3xy=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\xy=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\\\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\end{matrix}\right.\)

DD
6 tháng 8 2021

\(7x^3+11=3\left(x+y\right)\left(x+y+1\right)\)

\(\Leftrightarrow\left(x+y\right)^3+7x^3+11+1=\left(x+y\right)^3+3\left(x+y\right)\left(x+y+1\right)+1\)

\(\Leftrightarrow x^3+3x^2y+3xy^2+y^3+7x^3+3xy\left(3x+y\right)=\left(x+y\right)^3+3\left(x+y\right)^2+3\left(x+y\right)+1\)

\(\Leftrightarrow8x^3+12x^2y+6xy^2+y^3=\left(x+y+1\right)^3\)

\(\Leftrightarrow\left(2x+y\right)^3=\left(x+y+1\right)^3\)

\(\Leftrightarrow2x+y=x+y+1\)

\(\Leftrightarrow x=1\)

Với \(x=1\):

\(y\left(3+y\right)=4\)

\(\Leftrightarrow\orbr{\begin{cases}y=1\\y=-4\end{cases}}\).

6 tháng 8 2021

y = 1

y = -4

16 tháng 8 2016

1)Thấy: x=0;y=0 không phải là nghiệm của hệ.

\(\begin{cases}x^3-8x=y^3+2y\\x^2-3=3\left(y^2+1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y^3+2y\\x^2=3\left(y^2+2\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x^3-8x=y\left(y^2+2\right)\\x^2y=3y\left(y^2+2\right)\end{cases}\)

Trừ vế theo vế hai phương trình,đc:

\(x^3-8x-\frac{x^2y}{3}=0\Leftrightarrow y=\frac{3\left(x^3-8x\right)}{x^2}\)

\(\Leftrightarrow y=\frac{3\left(x^2-8\right)}{x}\).Thay \(y=\frac{3\left(x^2-8\right)}{x}\) vào pt 2 đc:

\(26x^4-426x^2-1728=0\)

\(\Leftrightarrow\begin{cases}x^2=9\\x^2=\frac{96}{13}\end{cases}\) dễ nhé oaoa

 

16 tháng 8 2016

lần sau bn đăng ít 1 thôi nhé

19 tháng 12 2015

a) Cả hai phương trình đều có chung \(\sqrt{x+3}\)

pt đầu suy ra  \(\sqrt{x+3}=2\sqrt{y-1}\)

pt sau suy ra \(\sqrt{x+3}=4-\sqrt{y+1}\)

Vậy \(2\sqrt{y-1}=4-\sqrt{y+1}\), đk y > 1

\(4\left(y-1\right)=16-8\sqrt{y+1}+y+1\)

\(8\sqrt{y+1}+3y-21=0\)

Đặt \(\sqrt{y+1}=t\)

=> y = t2 - 1

=> 8t + 3(t2 -1) -21 =0

3t2 + 8t - 24 = 0

=> t = ...

=> y = t2 - 1

=> \(\sqrt{x+3}=2\sqrt{y-1}\)

=> x =...

b) Trừ hai pt cho nhau ta có:

x2 - y2 = 3(y - x)

(x - y) (x + y + 3) = 0

=> x = y hoặc x + y + 3 = 0

Xét hai trường hợp, rút x theo y rồi thay trở lại một trong hai pt ban đầu tìm ra nghiệm

 

NV
13 tháng 2 2020

ĐKXĐ: ...

\(\left\{{}\begin{matrix}\frac{3}{x^2}=2x+y\\\frac{3}{y^2}=2y+x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x^3+x^2y=3\\2y^3+xy^2=3\end{matrix}\right.\)

\(\Rightarrow2\left(x^3-y^3\right)+xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2y^2+2xy\right)+xy\left(x-y\right)=0\)

\(\Leftrightarrow\left(x-y\right)\left(2x^2+2y^2+3xy=0\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x-y=0\\2x^2+2y^2+3xy=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=y\\2\left(x+\frac{3}{4}y\right)^2+\frac{7y^2}{8}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x=y=0\left(ktm\right)\end{matrix}\right.\)

Với \(x=y\) thay vào pt đầu: \(3x^3=3\Rightarrow x=1\Rightarrow y=1\)

11 tháng 2 2020

@Lê Nhật Anh nhầm chỗ \(a^2-\left(2-a\right)=4\)

\(\Rightarrow a^2+a-6=0\)

11 tháng 2 2020

\(\left\{{}\begin{matrix}x+xy+y=2\\x^2+y^2+xy=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy=2\\\left(x+y\right)^2-xy=4\end{matrix}\right.\)

Đặt \(x+y=a;xy=b\)

Hệ trở thành: \(\left\{{}\begin{matrix}a+b=2\\a^2-b=4\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2-a\\a^2-\left(2-a\right)=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}b=2-a\\a^2+a-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}b=2-a\\\left(a-1\right)\left(a+2\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\\\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\end{matrix}\right.\)

+)\(\left\{{}\begin{matrix}a=1\\b=1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y=1\\xy=1\end{matrix}\right.\)

\(\Rightarrow\) \(x,y\) là hai nghiệm của phương trình \(X^2-X+1=0\)( vô nghiệm)

+) \(\left\{{}\begin{matrix}a=-2\\b=4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-2\\xy=4\end{matrix}\right.\)

\(\Rightarrow\)\(x,y\) là hai nghiệm của phương trình \(Y^2+2Y+4=0\)( vô nghiệm)

Vậy hệ phương trình vô nghiệm