Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ đặt x+y = a
xy=b
Ta có a(a2 - 3b) = 19
a(8+b)=2
Dùng phương pháp thế rồi giải tìm được a=1; b=-6
Từ đó ta suy ra x=-2 và y=3 hoặc x=3 và y =-2
2/ ta có 3x2 +4 xy + y2 = 0 <=> (2x+y)2 - x2 = 0 <=> (3x+y)(x+y)=0 từ đó dùng phương pháp thế vào phương trình còn lại là ra
Mk nghĩ đề bài nên cho x ;y là số nguyên
Ta có:\(x^2y+xy^2+x+y+xy=11\)
\(\Rightarrow xy\left(x+y\right)+\left(x+y\right)+xy=11\)
\(\Rightarrow\left(xy+1\right)\left(x+y\right)+\left(xy+1\right)=12\)
\(\Rightarrow\left(xy+1\right)\left(x+y\right)=12\)
Từ đây => \(\inƯ\left(12\right)\)
Làm nốt
pt thứ (1) <=> x2 + y2 = 1 - xy
pt thứ (2) <=> (x+y)(x2 + y2 - xy) = x+ 3y
Thế pt (1) vào Pt (2) ta được
(x+y).(1 - 2xy) = x + 3y
<=> x - 2x2y + y - 2xy2 = x + 3y
<=> -2xy. (x+y) - 2y = 0
<=> y. (1 + x(x+y)) = 0
<=> y = 0 hoặc x.(x+y) = - 1
+) y = 0 => x2 = 1 => x = 1 hoặc x = -1
Từ pt thứ 2 => x3= x => x = 0 hoặc x = 1 hoặc x = -1
Vậy x = 1; y = hoặc x = -1 và y = 0
+) x.(x+y) = - 1 => x2 + xy = -1. Từ pt thứ 1
=> y2 - 1 = 1 <=> y2 = 2 => y = \(\sqrt{2}\) hoặc y = - \(\sqrt{2}\)
Thay y = \(\sqrt{2}\) vào x(x+y) = -1 => x=.....
+Nếu x = 0 thì \(pt\text{ (1) trở thành: }0=1\text{ (vô lí)}\)
+Xét \(x\ne0\)
\(pt\text{ (1)}\Leftrightarrow y=\frac{x^2-1}{x},\text{ thay vào }pt\text{ (2), ta được:}\)
\(\left(\frac{x^2-1}{x}\right)^2-3.\frac{x^2-1}{x}+6x=0\)
\(\Leftrightarrow\left(x^2-1\right)^2-3x\left(x^2-1\right)+6x^3=0\)
\(\Leftrightarrow\left(x^2+4x+1\right)\left(x^2-x+1\right)=0\)
\(\Leftrightarrow x=-2+\sqrt{3}\text{ hoặc }x=-2-\sqrt{3}\)
\(+x=-2+\sqrt{3}\text{ thì }y=2\sqrt{3}\)
\(+x=-2-\sqrt{3}\text{ thì }y=-2\sqrt{3}\)
Kết luận: \(\left(x;y\right)=\left(-2+\sqrt{3};2\sqrt{3}\right);\left(-2-\sqrt{3};-2\sqrt{3}\right)\)
Ta có:
x(x2+x+1)=4y(y+1)x(x2+x+1)=4y(y+1)
⟺x3+x2+x+1=4y2+4y+1⟺x3+x2+x+1=4y2+4y+1
⟺(x2+1)(x+1)=(2y+1)2⟺(x2+1)(x+1)=(2y+1)2 (*)
Đặt (x2+1;x+1)=d(x2+1;x+1)=d
⟹(x+1)(x−1)−(x2+1)⋮d⟹(x+1)(x−1)−(x2+1)⋮d
⟹2⋮d⟹2⋮d
Dễ thầy VPVP của phương trình (∗)(∗) là số lẻ nên chỉ xảy ra trường hợp d=±1d=±1
⟹x2+1=a2⟹x2+1=a2 và x+1=b2x+1=b2
Từ đây dễ dàng suy ra x=0x=0
⟹y=0;y=−1⟹y=0;y=−1
Thử lại ta thấy (x;y)=(0;0);(0;−1)(x;y)=(0;0);(0;−1)
\(xy< =\dfrac{x^2+y^2}{2}\)
=>\(xy< =\dfrac{2}{2}=1\)
=>xy+1<=2
Dấu '=' xảy ra khi xy=1
=>\(x=\dfrac{1}{y}\)
\(\left(x+y\right)\left(1+xy\right)^3=16\)
=>\(\left(y+\dfrac{1}{y}\right)\left(1+1\right)^3=16\)
=>\(y+\dfrac{1}{y}=2\)
=>y=1
=>x=1