Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Rightarrow\frac{xy+yz+zx}{xyz}=0\Rightarrow xy+yz+zx=0\)
\(P=\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{x^3y^3+y^3z^3+x^3z^3}{x^2y^2z^2}\)
Áp dụng nếu a+b+c=0 thì a3+b3+c3=3abc
Với a=xy, b=yz, c=zx
Ta có: \(P=\frac{a^3+b^3+c^3}{abc}=\frac{3abc}{abc}=3\)
Vậy P=3
\(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\\ \Rightarrow\frac{20}{4x}+\frac{xy}{4x}=\frac{1}{8}\\ \Rightarrow\frac{20+xy}{4x}=\frac{1}{8}\\ \Rightarrow160+8xy=4x\\ \Rightarrow160-8xy-4x=0\Rightarrow8xy-4x=160\\ \Rightarrow x\left(8y-1\right)=160\)
tới đây dễ rồi
\(A=\frac{x+y}{z}+1+\frac{x+z}{y}+1+\frac{y+z}{x}+1-3\)
\(A=\frac{x+y+z}{z}+\frac{x+y+z}{y}+\frac{x+y+z}{x}-3\)
\(A=\left(x+y+z\right)\cdot\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)-3=\left(z+y+z\right)\cdot0-3=-3\)
Vậy, A = -3
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}-\frac{1}{y}=5+1=6\)
\(\Leftrightarrow\frac{2}{x}=6\Rightarrow x=\frac{2}{6}=\frac{1}{3}\)
\(\frac{1}{x}+\frac{1}{y}-\left(\frac{1}{x}-\frac{1}{y}\right)=5-1=4\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}-\frac{1}{x}+\frac{1}{y}=4\)
\(\Leftrightarrow\frac{2}{y}=4\Rightarrow y=\frac{2}{4}=\frac{1}{2}\)
\(\Rightarrow x+y=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
lớp 8 có vẻ dễ nhỉ