\(A=\frac{2010x}{xy+2010x+2010}+\fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

Bạn thay y xyz=2010 vào A ta được

A= xyz*x/xy+xyz*x+xyz + y/yz+y+xyz + z/xz+z+1

suy ra A=x^2yz/xy(1+xz+z) + y/y(z+1+xz) + z/xz+x+1

 A= xz/1+xz+z + 1/z+1+xz + x/xz+z+1 = xz+1+x/xz+1+x =1

Vay A=1

3 tháng 4 2018
https://i.imgur.com/p4ArziJ.jpg
4 tháng 4 2018

\(\frac{2010x}{xy+2010x+2010}+\frac{y}{yz+y+2010}+\frac{z}{xz+z+1}\)

\(=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}\)

\(=\frac{xz}{xz+z+1}+\frac{1}{xz+z+1}+\frac{z}{xz+z+1}\)

\(=\frac{xz+z+1}{xz+z+1}=1\)

14 tháng 12 2018

\(\hept{\begin{cases}xyz=12\\x^3+y^3+z^3=36\end{cases}}\Leftrightarrow x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow x^3+y^3+z^3-3xyz=0\)

\(\Leftrightarrow\left(x+y\right)^3-3xy\left(x+y\right)-3xyz+z^3=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)=0\)

\(\Leftrightarrow x=y=z\left(x+y+z>0\right)\)

Thay x=y=z vào r tính thôi bạn

18 tháng 9 2018

bạn làm đk câu này chưa ạ 
nếu làm dk oy chỉ mik cách làm vs ạ

14 tháng 7 2016

Thay xyz = 2011 vào N được : 

\(N=\frac{x^2yz}{xy+x^2yz+xyz}+\frac{y}{yz+y+xyz}+\frac{z}{xz+z+1}=\frac{xy.xz}{xy\left(z+xz+1\right)}+\frac{y}{y\left(z+xz+1\right)}+\frac{z}{z+xz+1}\)

\(=\frac{xz}{z+xz+1}+\frac{1}{z+xz+1}+\frac{z}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)