Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3+32+33+...+312
A = (3+32)+(33+34)+...+(311+312)
A = 1(3+32)+32(3+32)+...+311.(3+32)
A = 1.12 + 32.12 +....+311.12
A = 12(1+32+...+311) chia hết cho 12
Mà 12 chia hết cho 4
=> A chia hết cho 4
A = 3+32+33+...+312
A = (3+32+33)+(34+35+36)+...+(310+311+312)
A = 3(1+3+32)+34(1+3+32)+....+310(1+3+32)
A = 3.13 + 34.13 +.....+310.13
A = 13(3+34+....+310) chia hết cho 13
KL: A chia hết cho 4; 12; 13 (đpcm)
1. C = 1 + 3 + 3^2 + 3^3 + .... + 3 ^11
( 1+ 3 + 3^2 ) +..... + ( 3^9 +3^10+3^11 )
13 . 1 +..... + 3^9 . 13
13 ( 1 +......+ 3^9 ) chia hết cho 13
Câu b tương tự nhé
+ Chia hết cho 4:
A= 3+ 32+ 33+ 34+ ..... + 359+ 360
= (3+ 32)+ (33+ 34)+ ..... + (359+ 360)
= 3 (1+ 3)+ 33 (1+ 3)+ ..... + 359 (1+ 3)
= (3+ 33+ ..... + 359) .4 chia hết cho 4
Vậy A chia hết cho 4.
+ Chia hết cho 13:
A= 3+ 32+ 33+ 34+ ..... + 359+ 360
= (3+ 32+ 33)+ (34+ 35+ 36)+ ..... + (358+ 359+ 360)
= 3 (1+ 3+ 32)+ 34 (1+ 3+ 32)+ ..... + 358 (1+ 3+ 32)
= (3+ 34+ ..... + 358) .13 chia hết cho 13
Vậy A chia hết cho 13.
Tick đúng nhé!
1, B=3+32+33+...+390
=(3+32+33)+(34+35+36)+...+(388+389+390)
=3.(1+3+32)+34.(1+3+32)+...+388.(1+3+32)
=3.(1+3+9)+34.(1+3+9)+...+388.(1+3+9)
=3.13+34.13+388.13
=13.(3+34+388)
Vậy tổng B=3+32+33+...+390 \(⋮\)13
Bài 1 : \(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{88}+3^{89}+3^{90}\right)\)
\(B=\left(3+3^2+3^3\right)+3^3\left(3+3^2+3^3\right)+...+3^{87}\left(3+3^2+3^3\right)\)
\(B=1.39+3^3.39+...+3^{87}.39\)
\(B=39\left(1+3^3+...+3^{87}\right)\)
\(B=13.3.\left(1+3^3+...+3^{87}\right)⋮13\)
Bài 2:
\(A=\left(1+2+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{195}+2^{196}+2^{197}\right)\)
\(A=\left(1+2+2^2\right)+2^3\left(1+2+2^2\right)+...+2^{195}\left(1+2+2^2\right)\)
\(A=7+2^3.7+...+2^{195}.7\)
\(A=7\left(1+2^3+...+2^{195}\right)⋮7\)
Vậy số dư khi chia cho 7 là 0
(Mình không chắc đúng,nếu sai thì bạn thông cảm nhé )
Chúc bạn học tốt
Chia hết cho 4 :
B = 30 + 3 + 32 + ... + 399
B = ( 30 + 3 ) + ( 32 + 33 ) + ... + ( 398 + 399 )
B = 30 ( 1 + 3 ) + 32 ( 1 + 3 ) + ... + 398 ( 1 + 3 )
B = 30 . 4 + 32 . 4 + ... + 398 . 4
B = 4 . ( 30 + 32 + ... + 398 ) ⋮ 4 ( đpcm )
Chia hết cho 10; 28 tương tự
\(B=1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=\left(1+3\right)+3^2.\left(1+3\right)+....+3^{98}.\left(1+3\right)\)
\(=\left(1+3\right).\left(1+3^2+...+3^{98}\right)\)
\(=4.\left(1+3^2+...+3^{98}\right)⋮4\)
Vậy B chia hết cho 4
\(B=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=\left(1+3+3^2\right)+3^3.\left(1+3+3^2\right)+....+3^{97}.\left(1+3+3^2\right)\)
\(=\left(1+3+3^2\right).\left(1+3^3+....+3^{97}\right)\)
\(=10.\left(1+3^3+...+3^{97}\right)⋮10\)
Vậy B chia hết cho 10
\(B=\left(1+3^3\right)+\left(3+3^4\right)+\left(3^2+3^5\right)+....+\left(3^{96}+3^{99}\right)\)
\(=\left(1+3^3\right)+3.\left(1+3^3\right)+3^2.\left(1+3^3\right)+....+3^{96}.\left(1+3^3\right)\)
\(=\left(1+3^3\right).\left(1+3+3^2+...+3^{96}\right)\)
\(=28.\left(1+3+3^2+....+3^{96}\right)⋮28\)
Vậy B chia hết cho 28
S=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396(1-3+32-33)
=-20+...+396.(-20)=-20(1+..+396) chia hết cho -20 => S là bội của -20
b) 3S=3-32+33-34+..+399-3100
3S+S=(3-32+33-34+..+399-3100)+(1-3+32-33+..+398-399)
4S=1-3100
S=(1-3100):4
Vì S chia hết cho -20=>S chia hết cho 4=>1-3100 chia hết cho 4 => 3100 :4 dư 1
Ta có:
310+311+312=310(1+3+32)
=310.13 chia hết cho 13 (đpcm)