Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: diendantoanhoc.net
Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành
\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)
\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)
Theo BĐT AM-GM và Cauchy-Schwarz ta có:
\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)
\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)
Bổ sung bài 1:
BĐT được chứng minh
Đẳng thức xảy ra <=> a=b=c
Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)
\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)
\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)
\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.
Ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)
Khi đó:
\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)
\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)
Tương tự:
\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)
\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)
Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)
Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)
Dấu "=" xảy ra tại \(a=b=c=1\)
P/S:Is that true ??
Dự đoán đẳng thức xảy ra tại \(a=b=c=\sqrt{3}\)
Ta có: \(\sqrt{a^2+1}=\sqrt{\frac{1}{4}}.\sqrt{4\left(a^2+1\right)}\le\sqrt{\frac{1}{4}}\left(\frac{4+a^2+1}{2}\right)=\frac{5+a^2}{4}\)
Thiết lập hai bđt còn lại tương tự và cộng theo vế:
\(VP\le3+\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)\)\(=\frac{27+a^2+b^2+c^2}{4}\)
Ta chỉ cần chứng minh: \(ab+bc+ca\ge\frac{27}{4}+\frac{a^2+b^2+c^2}{4}\)
Đến đây chưa nghĩ ra =((
Lạy trời cho con đừng gặp ngõ cụt như nãy nx,làm mà cứ ngõ cụt chán ~v
Lời giải:
\(a+b+c=abc\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\) (do a,b,c dương nên a + b + c > 0 tức là abc > 0)
Lại có: \(1=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\ge\frac{9}{ab+bc+ca}\Rightarrow VT=ab+bc+ca\ge9\) (1)
Ta sẽ c/m \(VP=3+\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le9\)
\(\Leftrightarrow A=\sqrt{a^2+1}+\sqrt{b^2+1}+\sqrt{c^2+1}\le6\)
Thật vậy: \(A=\frac{1}{2}\left[\sqrt{4\left(a^2+1\right)}+\sqrt{4\left(b^2+1\right)}+\sqrt{4\left(c^2+1\right)}\right]\)
\(\le\frac{1}{2}\left(\frac{15+a^2+b^2+c^2}{2}\right)=\frac{15+a^2+b^2+c^2}{4}\)
Lại gặp ngõ cụt nữa r,=((Ai đó giúp em vs!!!
giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:
x,y,z>0 và 4x+3y+4z=22
ta thấy với a=x; b=y; c=z thì
\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)
do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức
\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)
\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)
và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được
\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)
\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)
vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22
muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là
\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)
vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)
giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:
\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)
\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)
đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3
Bài này chắc dùng phương pháp hạ bậc + chọn điểm rơi. :v
Lời giải:
Dự đoán dấu "=" xảy ra tại a = b = 1
Ta có: \(1+a^2\ge2a;1+b^2\ge2b\) (cô si)
Suy ra \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{1}{2a}+\frac{1}{2b}\) (1)
Áp dụng BĐT Am-Gm (Cô si),ta có: \(ab\le\frac{a^2+b^2}{2}\)
Lại có: \(\frac{2}{1+ab}\ge\frac{2}{1+\frac{a^2+b^2}{2}}\ge\frac{2}{1+\frac{2}{2}}=1\) (2)
Ta sẽ c/m: \(\frac{1}{2a}+\frac{1}{2b}\le1\Leftrightarrow\frac{1}{a}+\frac{1}{b}\le2\)
Chứng minh tiếp đi:v,bí r:v
Đặt \(2n+2017=a^2;n+2019=b^2\)
\(\Rightarrow2n+4038=2b^2\)
\(\Rightarrow2b^2-a^2=2021\)
\(\Leftrightarrow\left(\sqrt{2b}-a\right)\left(\sqrt{2b}+a\right)=2021=1\cdot2021=47\cdot43\)
Tự xét nốt nha
\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2019}\)
\(\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2019}\)
\(\Leftrightarrow2019a+2019b-ab=0\)
\(\Leftrightarrow ab-2019a-2019b=0\)
\(\sqrt{a+b}=\sqrt{a-2019}+\sqrt{b-2019}\)
\(\Leftrightarrow a+b=a-2019+b-2019+2\sqrt{\left(a-2019\right)\left(b-2019\right)}\)
\(\Leftrightarrow2\sqrt{ab-2019a-2019b+2019^2}=2\cdot2019\)
\(\Leftrightarrow2\cdot2019=2\cdot2019\) ( LUÔN OK THEO COOL KID ĐZ )
P/S:SORRY NHA.LÚC CHIỀU BẬN VÀI VIỆC NÊN KO ONL DC:(((