K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2019

Xét: \(9M=\Sigma\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{3}{2}+\Sigma\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-3+\frac{9}{2}\)

\(=\Sigma\left(\frac{a^2+b^2+c^2}{4a^2+b^2+c^2}-\frac{1}{2}\right)+\Sigma\left(\frac{2\left(ab+bc+ca\right)}{4a^2+b^2+c^2}-1\right)+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{b^2+c^2-2a^2}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2ab+2bc+2ca-4a^2-b^2-c^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\frac{\left(b-a\right)\left(b+a\right)+\left(c-a\right)\left(c+a\right)}{\left(4a^2+b^2+c^2\right)}+\Sigma\frac{2a\left[\left(b-a\right)+\left(c-a\right)\right]}{4a^2+b^2+c^2}-\Sigma\frac{\left(b-c\right)^2}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(\frac{\left(a-b\right)\left(a+b\right)}{a^2+4b^2+c^2}-\frac{\left(a-b\right)\left(b+a\right)}{4a^2+b^2+c^2}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\frac{1}{2}\Sigma\left(a-b\right)\left(a+b\right)\left(\frac{3a^2-3b^2}{\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}\right)-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\frac{3\left(a-b\right)^2\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}-\Sigma\frac{\left(a-b\right)^2}{a^2+b^2+4c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}-\frac{1}{a^2+b^2+4c^2}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)

\(=\Sigma\left(a-b\right)^2\left[\frac{3\left(a+b\right)^2\left(a^2+b^2+4c^2\right)-2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)}{2\left(a^2+4b^2+c^2\right)\left(4a^2+b^2+c^2\right)\left(a^2+b^2+4c^2\right)}\right]-\Sigma\frac{2a\left(a-b\right)}{4a^2+b^2+c^2}+\frac{9}{2}\)Ai đó làm tiếp giúp em vs:( Em chỉ nghĩ ra được tới đây thôi.

9 tháng 10 2019

Ta có:

\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab;a^2+c^2\ge2\sqrt{a^2c^2}=2ac;a^2+a^2\ge2\sqrt{a^2a^2}=2a^2\)

Khi đó:

\(4a^2+b^2+c^2\ge2a\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{4a^2+b^2+c^2}\le\frac{1}{6a}\)

Tương tự:

\(\frac{1}{a^2+4b^2+c^2}\le\frac{1}{6b};\frac{1}{a^2+b^2+4c^2}\le\frac{1}{6c}\cdot\)

\(\Rightarrow M\le\frac{1}{6}\cdot\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{ab+bc+ca}{abc}\cdot\frac{1}{6}\) \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow3\ge3\sqrt[3]{abc}\Rightarrow abc\le1\)

Theo BĐT \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=3\)

Khi đó \(M\le\frac{3}{1}\cdot\frac{1}{6}=\frac{1}{2}\)

Dấu "=" xảy ra tại \(a=b=c=1\)

P/S:Is that true ??

15 tháng 4 2020

giả sử P đạt GTNN khi a=x, b=y; c=z. khi đó ta có:

x,y,z>0 và 4x+3y+4z=22

ta thấy với a=x; b=y; c=z thì 

\(\frac{1}{3a}=\frac{1}{3x}=\frac{1}{3x^2};\frac{2}{b}=\frac{2}{y}=\frac{2}{y^2},\frac{3}{c}=\frac{3}{z}=\frac{3}{z^2}\)

do đó, các đánh giá sau sẽ đảm bảo được điều kiện đẳng thức

\(\hept{\begin{cases}\frac{1}{3a}+\frac{a}{3x^2}\ge2\sqrt{\frac{1}{3a}\cdot\frac{a}{3a^2}}=\frac{2}{3x}\\\frac{2}{b}+\frac{2b}{y^2}\ge2\sqrt{\frac{2}{b}\cdot\frac{2b}{y^2}}=\frac{4}{y}\\\frac{3}{c}+\frac{3c^2}{z}\ge2\sqrt{\frac{3}{c}\cdot\frac{3c}{z^2}}=\frac{6}{z}\end{cases}}\)

\(\Rightarrow\frac{1}{3a}\ge\frac{2}{3x}-\frac{a}{3x^2};\frac{2}{b}\ge\frac{4}{y}-\frac{2b}{y^2};\frac{3}{c}\ge\frac{6}{z}-\frac{3c}{z^2}\)

và như vậy, ta đã chuyển được các phân thức về dạng bậc nhất và thu được

\(P\ge a+b+c+\left(\frac{2}{3x}-\frac{a}{3x^2}\right)+\left(\frac{4}{y}-\frac{2b}{y^2}\right)+\left(\frac{6}{z}-\frac{3c}{z^2}\right)\)

\(=\left(1-\frac{1}{3x^2}\right)a+\left(1-\frac{2}{y^2}\right)b+\left(1-\frac{3}{z^2}\right)c+\frac{2}{3x}+\frac{4}{y}+\frac{6}{z}\)

vấn đề còn lại là ta phải chọn các số x,y,z thích hợp làm sao để có thể sử dụng được giả thiếu 4a+3b+4c=22

muốn vậy các hệ số của a,b,c trong đánh giá trên phải thành lập tỉ lệ 4:3:4 tức là

\(\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{1}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\)

vậy điểm rơi thực sự của bài toán chình là nghiệm của hệ phương trình \(\hept{\begin{cases}4x+3y+4z=22\\\frac{1-\frac{1}{3x^2}}{4}=\frac{1-\frac{2}{y^2}}{3}=\frac{1-\frac{3}{z^2}}{4}\end{cases}\left(1\right)}\)

giải hệ này ta tìm được x=1; y=2; z=3. khi đó ta có:

\(P\ge\left(1-\frac{1}{3}\right)a+\left(1-\frac{2}{2^2}\right)b+\left(1-\frac{3}{3^2}\right)c+\frac{2}{3}+\frac{4}{2}+\frac{6}{3}\)

\(=\frac{4a+3b+4c}{6}+\frac{14}{3}=\frac{22}{6}+\frac{14}{3}=\frac{25}{3}\)

đẳng thức xảy ra khi a=x=1; b=y=2 và c=z=3

20 tháng 7 2020

Sử dụng kết hợp hai bất đẳng thức Cauchy-Schwarz và AM - GM, ta được: \(\left(ab+1\right)^2\le\left(a^2+1\right)\left(b^2+1\right)=\left(a.a.1+1\right)\left(b.b.1+1\right)\)\(\le\left(\frac{a^3+a^3+1}{3}+1\right)\left(\frac{b^3+b^3+1}{3}+1\right)=\frac{4}{9}\left(a^3+2\right)\left(b^3+2\right)\)\(\Rightarrow ab+1\le\frac{2}{3}\sqrt{\left(a^3+2\right)\left(b^3+2\right)}\Rightarrow\frac{a^3+2}{ab+1}\ge\frac{3}{2}\sqrt{\frac{a^3+2}{b^3+2}}\)(1)

Hoàn toàn tương tự: \(\frac{b^3+2}{bc+1}\ge\frac{3}{2}\sqrt{\frac{b^3+2}{c^3+2}}\)(2); \(\frac{c^3+2}{ca+1}\ge\frac{3}{2}\sqrt{\frac{c^3+2}{a^3+2}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: 

\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\ge\)\(\frac{3}{2}\left(\sqrt{\frac{a^3+2}{b^3+2}}+\sqrt{\frac{b^3+2}{c^3+2}}+\sqrt{\frac{c^3+2}{a^3+2}}\right)\)

\(\ge\frac{3}{2}.\sqrt[3]{\sqrt{\frac{a^3+2}{b^3+2}}.\sqrt{\frac{b^3+2}{c^3+2}}.\sqrt{\frac{c^3+2}{a^3+2}}}=\frac{3}{2}\)(Áp dụng BĐT AM - GM)

Đẳng thức xảy ra khi a = b = c = 1

24 tháng 8 2018

Vì a+b+c=0=>(a+b)=-c. Tương tự:(b+c)=-a;(a+c)=-b.

Ta có A=:\(\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-c^2-a^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{\left(a-b\right)\left(a+b\right)-c^2}+\frac{b^2}{\left(b-c\right)\left(b+c\right)-a^2}+\frac{c^2}{\left(c-a\right)\left(c+a\right)-b^2}\)

\(=\frac{a^2}{\left(a-b\right).\left(-c\right)-c^2}+tươngtự\)

\(=\frac{a^2}{-ca+bc-c^2}\)+ tương tự

\(=\frac{a^2}{c\left(b-c-a\right)}+tươngtự\)

\(=\frac{a^2}{c\left(b-\left(c+a\right)\right)}\)+ tương tự nha 

\(=\frac{a^2}{c\left(b-\left(-b\right)\right)}+tươngtự=\frac{a^2}{2bc}+tươngtự\)

Sau đó ta có :\(\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2bc}\)

=\(\frac{a^3+b^3+c^3}{2abc}=\frac{\left(a+b\right)^3-3ab\left(a+b\right)+c^3}{2abc}\)

\(=\frac{\left(a+b+c\right)^3-3\left(a+b\right)c\left(a+b+c\right)-3ab\left(a+b\right)}{2abc}\)=\(\frac{0-0-3ab\left(-c\right)}{2abc}\)(do a+b+c=0)

=\(\frac{3abc}{2abc}=\frac{3}{2}\)Ok r bạn

bạn kiếm kiểu gì cx ko có ai giải đâu, đề này sai r, nãy mình sửa mới đúng

18 tháng 2 2020

Mình giúp bạn nha :33

Áp dụng BĐT Cô - si  cho 2 số dương ta được :

\(\frac{a}{b}+\frac{b}{a}\ge2\sqrt{\frac{a}{b}\cdot\frac{b}{a}}=2\) (1)

\(\frac{a}{b^2}+\frac{b}{a^2}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{b}{a^2}}=2\sqrt{\frac{1}{ab}}\ge2\sqrt{\frac{1}{\frac{a^2+b^2}{2}}}=2.1=2\) (2)

( Do BĐT \(a^2+b^2\ge2ab\) \(\Rightarrow\frac{1}{ab}\ge\frac{1}{\frac{a^2+b^2}{2}}=1\) )

Nhân hai vế của BĐT (1) và (2) ta được BĐT cần chứng minh.

Dấu "=" xảy ra \(\Leftrightarrow a=b=1\)

18 tháng 2 2020

Ta có a^2 +b^2=2

Áp dụng BĐT Cosi

\(ab\le\frac{a^2+b^2}{2}=1\)

\(\frac{a}{b}+\frac{b}{a}\ge2\left(1\right)\)

\(\frac{a}{b^2}+\frac{b}{a^2}\ge2\sqrt{\frac{a}{b^2}\cdot\frac{b}{a^2}}=2\sqrt{\frac{1}{ab}}\ge2\left(2\right)\)

từ (1),(2) ta có ĐPCM

ban oi a^2+b^2+c^2= a^2+b^2+c^2 là chuyện đương nhiên mà bạn

22 tháng 12 2019

quên là (a+b+c)2=a2+b2+c2    xin lỗi nha