Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
a) \(32< 2^n< 128\)
⇔ \(2^5< 2^n< 2^7\)
⇔ \(5< n< 7\)
=> \(n=6\)
Vậy \(n=6.\)
b) Sửa lại đề là \(2.16>2^n>4\)
⇔ \(32>2^n>4\)
⇔ \(2^5>2^n>2^2\)
⇔ \(5>n>2\)
=> \(n=3;n=4\)
Vậy \(n\in\left\{3;4\right\}.\)
c) \(9.27< 3^n< 243\)
⇔ \(243< 3^n< 243\)
⇔ \(3^5< 3^n< 3^5\)
⇔ \(5< n< 5\)
=> \(n\in\varnothing\)
Vậy không tồn tại giá trị nào của \(n.\)
Mình chỉ làm bài 5 thôi nhé.
Chúc bạn học tốt!
5.
a) 32 < 2n < 128
<=> 25 < 2n < 27
<=> 2n = 26
<=> n = 6
b) sai đề
c) 9.27 \(\le\) 3n \(\le\) 243
<=> 35 \(\le\) 3n \(\le\) 35
<=> 3n = 35 <=> n = 5
6.
a) 9920 = (992)10 = 980110
Vì 9801 < 9999 nên 980110 < 999910
hay 9920 < 999910
b) 321 = 3.320 = 3.(32)10 = 3.910
231 = 2.230 = 2.(23)10 = 2.810
Vì 3.910 < 2.810 nên 321 < 231
c) 3.2410 = 3.(23.3)10 = 311.230 = 311.(22)15 = 311.415
Vì 311.415 < 415.415 = 430
nên 3.2410 < 230 + 330 + 430
a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)
c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)
\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)
Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)
\(2^{20}+3^{30}+4^{30}=4^{10}+9^{10}+64^{10}<64^{10}+64^{10}+64^{10}=3.64^{10}\)
\(324^{10}>320^{10}=\left(5.64\right)^{10}=5^{10}.64^{10}>3.64^{10}\)
\(\Rightarrow2^{20}+3^{30}+4^{30}<324^{10}\)
a. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)\)
\(=1-1+1-1+...+1-1\)
\(=0\)
b. Thay x = -1 vào biểu thức ta được:
\(\left(-1\right)^{100}+\left(-1\right)^{99}+\left(-1\right)^{98}+...-1\)
\(=1-1+1-1+...+1-1\)
\(=0\)
Bài 1:
Ta có: -321<-320=-(32)10=-910
=>-321<-910(1)
-231<-230=-(23)10=-810
=>-231<-810(2)
mà 9>8 nên -910<-810 (3)
từ (1) ; (2) và (3) ta được:
-321<-231
Bài 2:
Ta có: 33334444=(3.1111)4444=34444.11114444=(34)1111.11114444=811111.11114444
44443333=(4.1111)3333=43333.11113333=(43)1111.11113333=641111.11113333
Vì 81>64 và 4444>3333 nên 811111.11114444>641111.11113333
hay 33334444>44443333
a) \(x^2-6x+10>x^2-6x+9=\left(x-3\right)^2>0\\ \Rightarrow x^2-6x+10>0\)
b)\(4x^2-20x+27>4x^2-20x+25=\left(2x+5\right)^2\ge0\\ \Rightarrow4x^2-20x+27>0\)
c)\(x^2+x+1>x^2\ge0\)
d)\(x^2+4x+y^2+6y+15=\left(x+2\right)^2+\left(y+3\right)^2+2\\ \left(x+2\right)^2\ge0;\left(y+3\right)^2\ge0;\\ \Rightarrow x^2+4x+y^2+6y+15\ge2>0\)
Ta có:
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{20}=\left(3^{2.10}\right)=\left(3^2\right)^{10}=9^{10}\)
Vì 9^10 > 8^10 nên 2^30< 3^20