Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 32 < 2^n < 128
2^5 < 2^n < 2^7
=> 5 < n < 7
Vì n là nguyên dương => n = 6
2, 2.16 > (=) 2^n > 4
2.2^4 > (=) 2^n > 2^2
2^5 > (=) 2^n > 2^2
5 >(=) n > 2 => n = 5 ; 4 ; 3
3, 9.27 < 3^n <= 243
3^2 . 3^3 < 3^n <= 3^5
3^5 < 3^n <=5
5 < n <= 5 ( không có n)
a) Ta có: \(99^{20}=\left(99^2\right)^{10}=9801^{10}< 9999^{10}\Rightarrow99^{20}< 9999^{10}\)
b) Ta có: \(2^{31}=\left(2\frac{31}{21}\right)^{21}=2,7822^{21}< 3^{21}\Rightarrow2^{31}< 3^{21}\)
c) Ta có: \(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
Lại có: \(3.24^{10}=2.24^{10}+24^{10}\Rightarrow24^{10}< 27^{10}\left(1\right)\)
\(2.24^{10}< 48^{10}< 64^{10}\left(2\right)\)
Từ 1,2 => \(24^{10}+2.24^{10}< 27^{10}+64^{10}\Rightarrow3.24^{10}< 8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3.24^{10}< 3^{30}+2^{30}+4^{30}\)
Bài 5:
a) \(32< 2^n< 128\)
⇔ \(2^5< 2^n< 2^7\)
⇔ \(5< n< 7\)
=> \(n=6\)
Vậy \(n=6.\)
b) Sửa lại đề là \(2.16>2^n>4\)
⇔ \(32>2^n>4\)
⇔ \(2^5>2^n>2^2\)
⇔ \(5>n>2\)
=> \(n=3;n=4\)
Vậy \(n\in\left\{3;4\right\}.\)
c) \(9.27< 3^n< 243\)
⇔ \(243< 3^n< 243\)
⇔ \(3^5< 3^n< 3^5\)
⇔ \(5< n< 5\)
=> \(n\in\varnothing\)
Vậy không tồn tại giá trị nào của \(n.\)
Mình chỉ làm bài 5 thôi nhé.
Chúc bạn học tốt!
5.
a) 32 < 2n < 128
<=> 25 < 2n < 27
<=> 2n = 26
<=> n = 6
b) sai đề
c) 9.27 \(\le\) 3n \(\le\) 243
<=> 35 \(\le\) 3n \(\le\) 35
<=> 3n = 35 <=> n = 5
6.
a) 9920 = (992)10 = 980110
Vì 9801 < 9999 nên 980110 < 999910
hay 9920 < 999910
b) 321 = 3.320 = 3.(32)10 = 3.910
231 = 2.230 = 2.(23)10 = 2.810
Vì 3.910 < 2.810 nên 321 < 231
c) 3.2410 = 3.(23.3)10 = 311.230 = 311.(22)15 = 311.415
Vì 311.415 < 415.415 = 430
nên 3.2410 < 230 + 330 + 430