K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2015

\(y'=1-\frac{3x^2}{\left(x^3\right)^2}=1-\frac{3}{x^4}\)

DD
8 tháng 10 2021

\(y=x^3-mx^2+\left(1-2m\right)x+1\)

\(y'=3x^2-2mx+1-2m\)

Để đồ thị hàm số đã cho có hai cực trị nằm về hai phía của trục tung thì phương trình \(y'=0\)có hai nghiệm phân biệt \(x_1,x_2\)thỏa mãn \(x_1x_2< 0\).

Ta có: \(y'=0\Leftrightarrow3x^2-2mx+1-2m=0\)(1)

Để (1) có hai nghiệm phân biệt thỏa mãn \(x_1x_2< 0\)thì: 

\(\hept{\begin{cases}\Delta'=m^2-3\left(1-2m\right)>0\\\frac{1-2m}{3}< 0\end{cases}}\Leftrightarrow m>\frac{1}{2}\).

Vậy \(m>\frac{1}{2}\)thỏa mãn ycbt. 

NM
10 tháng 1 2022

ta có 

\(y'=3x^2-6x=3x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

y' >0 khi \(x\in\left(-\infty,0\right)\cup\left(2,+\infty\right)\)

Vậy hàm đồng biến trên hai khoảng là \(\left(-\infty,0\right)\cup\left(2,+\infty\right)\)

NV
5 tháng 6 2019

Ta thấy phương trình \(f'\left(x\right)=0\) có 3 nghiệm bội lẻ là \(x=\left\{1;-2;2\right\}\) nên hàm số đã cho có 3 điểm cực trị

Nghiệm bội chẵn không là cực trị.

10 tháng 5 2022

y'=3x2-2(m+2)x+1-m.

\(\Delta\)'=(m+2)2-3(1-m)=m2+7m+1>0 (để hàm số có hai điểm cực trị x1, x2).

|x1-x2|=2 \(\Leftrightarrow\) (x1+x2)2-4x1x2=4 \(\Leftrightarrow\) \(\left[\dfrac{2\left(m+2\right)}{3}\right]^2-4\dfrac{1-m}{3}=4\) \(\Rightarrow\) m=-8 (nhận) hoặc m=1 (nhận).

NV
4 tháng 5 2019

\(y'=\frac{5\left(x^2+4\right)-2x.5x}{\left(x^2+4\right)}f'\left(\frac{5x}{x^2+4}\right)=\frac{5\left(4-x^2\right)}{x^2+4}f'\left(\frac{5x}{x^2+4}\right)\)

\(=\frac{5\left(2-x\right)\left(2+x\right)}{\left(x^2+4\right)}.\left(\frac{5x}{x^2+4}\right)^2.\left(\frac{5x}{x^2+4}-1\right)\left(\frac{65x}{x^2+4}-15\right)^3\)

\(=\frac{5\left(2-x\right)\left(2+x\right).25x^2\left(x-4\right)\left(1-x\right)\left(x-3\right)^3\left(4-3x\right)^3.5^3}{\left(x^2+4\right)^7}\)

Ta thấy \(y'=0\) có 7 nghiệm nhưng nghiệm \(x=0\) có mũ chẵn nên hàm số có 6 điểm cực trị