Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{x-y}-\dfrac{1}{x-y}-\dfrac{1-y}{y-x}=\dfrac{x}{x-y}-\dfrac{1}{x-y}+\dfrac{y-1}{x-y}=\dfrac{x-1+y-1}{x-y}=\dfrac{x+y-2}{x-y}\)
x+\(\dfrac{y}{2}\)+x+\(\dfrac{2}{2}\)x2+4
=2x+\(\dfrac{4+y}{2}\)+4
Ta có
a, x2-x-y2-y
=x2-y2-(x+y)
=(x-y)(x+y) - (x+y)
=(x+y)(x-y-1)
b, x2-2xy+y2-z2
=(x-y)2-z2
=(x-y-z)(x-y+z)
\(x^2+y^2-x^2y^2+xy-x-y\)\(=\left(xy-x\right)+\left(y^2-y\right)-\left(x^2y^2-x^2\right)\)
\(=x\left(y-1\right)+y\left(y-1\right)-x^2\left(y^2-1\right)\)\(=\left(y-1\right)\left[x+y-x^2\left(y+1\right)\right]\)
\(=\left(y-1\right)\left(x+y-x^2y-x^2\right)\)\(=\left(y-1\right)\left[x\left(1-x\right)+y\left(1-x^2\right)\right]\)
\(=\left(y-1\right)\left(1-x\right)\left[x+y\left(1+x\right)\right]=\left(y-1\right)\left(1-x\right)\left(xy+x+y\right)\)
c: \(=\dfrac{8}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{2x^2-2}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}+\dfrac{\left(x^2+3\right)\left(x-1\right)}{\left(x^2+3\right)\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{1}{x-1}\)
Câu a:
\(x^2-y^2-x+3y-2=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)\)
\(< =>\left(x-\frac{1}{2}\right)^2-\left(y-\frac{3}{2}\right)^2\)
\(< =>\left(x-\frac{1}{2}+y-\frac{3}{2}\right)\left(x-\frac{1}{2}-y+\frac{3}{2}\right)=\left(x+y-2\right)\left(x-y+1\right)\)
x4+x2+1
=(x2)2+2x2+1-2x2+x2
=(x2+1)2-2x2+x2
= (x² + 1)² − x²
= (x² + x+ 1 )(x² − x+ 1 )
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)
\(\dfrac{x+y}{2\left(x-y\right)}+\dfrac{2y^2}{y-x}=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{2y^2}{x-y}=\dfrac{x+y}{2\left(x-y\right)}-\dfrac{4y^2}{2\left(x-y\right)}=\dfrac{x+y-4y^2}{x-y}\)