Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x^4 + x^2 + 1
= x^4 + 2x^2 + 1 - x^2
= ( x^2 + 1)^2 - x^2
= ( x^2 - x + 1 )( x^2 + x + 1)
x4+x2+1
=x4-x+x2+x+1
=x(x3-1)+(x2+x+1)
=x(x-1)(x2+x+1)+(x2+x+1)
=(x2-x)(x2+x+1)+(x2+x+1)
=(x2+x+1)(x2-x+1)
\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)
\(=\left(x+1\right)^4+x^2\cdot\left(x+1\right)^2+2x\left(x+1\right)+1\)
\(=\left(x+1\right)^2\cdot\left[\left(x+1\right)^2+x^2\right]+2x^2+2x+1\)
\(=\left(2x^2+2x+1\right)\left(x^2+2x+1+1\right)\)
\(=\left(2x^2+2x+1\right)\left(x^2+2x+2\right)\)
x4 -2x2 +1 =x2.x2 - x2-x2 +1= - x2(1- x2) + (1 - x2)=(1-x2).(1-x2)=(1-x2)2
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3[\left(x^4+2x^2+1\right)-x^2]-\left(x^2+x+1\right)^2\)\(=3[\left(x^2+1\right)^2-x^2]-\left(x^2+x+1\right)^2\)
\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)=2\left(x-1\right)^2\left(x^2+x+1\right)\)
Ta có:
\(x^4+2013x^2+2012x+2013=x^4+2013x^2+2013x+2013-x\)
\(=\left(x^4-x\right)+\left(2013x^2+2013x+2013\right)\)
\(=x\left(x^3-1\right)+2013\left(x^2+x+1\right)\)
\(=x\left(x-1\right)\left(x^2+x+1\right)+2013\left(x^2+x+1\right)\)
\(=\left(x^2-x+2013\right)\left(x^2+x+1\right)\)
x4+x2+1
=(x2)2+2x2+1-2x2+x2
=(x2+1)2-2x2+x2
= (x² + 1)² − x²
= (x² + x+ 1 )(x² − x+ 1 )
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)