K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2=3[\left(x^4+2x^2+1\right)-x^2]-\left(x^2+x+1\right)^2\)\(=3[\left(x^2+1\right)^2-x^2]-\left(x^2+x+1\right)^2\)

\(=3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)=2\left(x-1\right)^2\left(x^2+x+1\right)\)

\(\left(x+1\right)^4+\left(x^2+x+1\right)^2\)

\(=\left(x+1\right)^4+x^2\cdot\left(x+1\right)^2+2x\left(x+1\right)+1\)

\(=\left(x+1\right)^2\cdot\left[\left(x+1\right)^2+x^2\right]+2x^2+2x+1\)

\(=\left(2x^2+2x+1\right)\left(x^2+2x+1+1\right)\)

\(=\left(2x^2+2x+1\right)\left(x^2+2x+2\right)\)

1 tháng 11 2020

\(x^7+x^5+x^4+x^3+x^2+1\)

\(=x^7+x^6-x^6-x^5+2x^5+2x^4-x^4-x^3+2x^3+2x^2-x^2-x+x+1\)

\(=\left(x^7+x^6\right)-\left(x^6+x^5\right)+\left(2x^5+2x^4\right)-\left(x^4+x^3\right)+\left(2x^3+2x^2\right)-\left(x^2+x\right)+\left(x+1\right)\)

\(=x^6.\left(x+1\right)-x^5.\left(x+1\right)+2x^4\left(x+1\right)-x^3\left(x+1\right)+2x^2\left(x+1\right)-x\left(x+1\right)+\left(x+1\right)\)

\(=\left(x+1\right)\left(x^6-x^5+2x^4-x^3+2x^2-x+1\right)\)

1 tháng 7 2015

     x^4 + x^2 + 1 

= x^4 + 2x^2   + 1 - x^2

= ( x^2  + 1)^2 - x^2

= ( x^2 - x + 1 )( x^2 + x + 1)

17 tháng 5 2016

\(3\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)

\(=\left(x^2+x+1\right)\left(3-x^2-x-1\right)\)

\(=\left(x^2+x+1\right)\left(2-x^2-x\right)\)

17 tháng 5 2016

3(x2+x2+1) hay 3(x2+x+1) vậy ??

10 tháng 10 2015

x4+x2+1

=x4-x+x2+x+1

=x(x3-1)+(x2+x+1)

=x(x-1)(x2+x+1)+(x2+x+1)

=(x2-x)(x2+x+1)+(x2+x+1)

=(x2+x+1)(x2-x+1)

28 tháng 7 2017

Ta có:

\(x^3-x^2-x-2=x^3-2x^2+x^2-2x+x-2\)

\(=x^2\left(x-2\right)+x\left(x-2\right)+x-2=\left(x-2\right)\left(x^2+x+1\right)\)

5 tháng 11 2017

\(x^{10}+x^8+x^6+x^4+x^2+1=x^8\left(x^2+1\right)+x^4\left(x^2+1\right)+\left(x^2+1\right)\)\(=\left(x^2+1\right)\left(x^8+x^4+1\right)=\left(x^2+1\right)\left(x^8-x^2+x^4+x^2+1\right)\)

\(=\left(x^2+1\right)[x^2\left(x-1\right)\left(x^3+1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\left(x^2-x+1\right)]\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\left(x^6-x^5+x^3-x+1\right)\)

5 tháng 11 2017

= \(x^8\left(x^2+1\right)+x^4\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(x^8+x^4+1\right)\)