K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

Ta có

\(n^3-n=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+2\right)\)

Ta có \(n\left(n-1\right)\left(n+2\right)\) chia hết cho 2 vì có tích 2 số tự nhiên liên tiếp

           \(n\left(n-1\right)\left(n+2\right)\) chia hết cho 3 ví là tích 3 số tự nhiên liên tiếp

Mà (2;3)=1

=>\(n^3-n\) chia hết cho 6 (đpcm)

3 tháng 8 2016

Ta có : \(n^3-n\)

\(=n\left(n^2-1\right)\)

\(=n\left(n-1\right)\left(n+1\right)\)

Ta có : \(n\left(n-1\right)\left(n+1\right)\) là tích của ba số tự nhiên liên tiếp nên chia hết cho 2.3 = 6

9 tháng 7 2016

1./ Khẳng định 1: Với mọi p tự nhiên > 0, ta đều có: yp - 1 = (y - 1)*(yp-1 + yp-2 + yp-3 +... + y + 1)

Hay yp - 1 chia hết cho y - 1 với mọi y nguyên > 1.

2./ Nếu m = n = 0 thì hiển nhiên x3*0+1 + x3*0+2 + 1 = x2 + x + 1 chia hết cho:  x2 + x + 1

3./ Nếu m; n không đồng thời bằng 0 thì:

Viết \(A=x^{3m+1}+x^{3n+2}+1=x\cdot x^{3m}-x+x^2\cdot x^{3n}-x^2+x^2+x+1.\)

\(A=x\left(x^{3m}-1\right)+x^2\left(x^{3n}-1\right)+x^2+x+1\)

\(A=x\left(\left(x^3\right)^m-1\right)+x^2\left(\left(x^3\right)^n-1\right)+x^2+x+1\)

Áp dụng khẳng định 1 cho m, n tự nhiên > 0 ta có:

\(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x3 - 1. Mà x3 - 1 = (x - 1)(x2 + x + 1)

=> \(\left(x^3\right)^m-1\)và \(\left(x^3\right)^m-1\)chia hết cho x2 + x + 1

=> A chia hết cho x2 + x + 1 với mọi m,n là số tự nhiên. đpcm

Với m,n là các số tự nhiên ta có \(x^{3m+1}+x^{3n+1}+1=\left(x^{3m+1}-x\right)+\left(x^{3n+2}-x\right)+x^2+x+1\)
Ta thấy:

  1. \(x^{3m+1}-x=x\left(\left(x^3\right)^m-1\right)\) chia hết cho \(x^3-1\)và vì \(x^3-1\) chia hết cho x^2 + x + 1 nên x^(3m + 1) - x chia hết cho x^2 + x + 1. 

ii/ x^(3n + 2) - x^2 = x^2[(x^3)^n - 1] chia hết cho x^3 - 1, và vì x^3 - 1 chia hết cho x^2 + x + 1 nên x^(3n + 2) - x^2 chia hết cho x^2 + x + 1. 
Từ đó suy ra [x^(3m + 1) - x] + [x^(3n + 2) - x^2] + (x^2 + x + 1) chia hết cho x^2 + x + 1, hay x^(3m + 1) + x^(3n + 2) + 1 chia hết cho x^2 + x + 1. Đây là điều phải chứng minh.

16 tháng 6 2015

n3-n=n(n-1)(n+1)

n(n-1) là tích 2 số tự nhiên liên tiếp nên chia hết cho 2

n lẻ => n+1 chẵn n-1 chẵn mà tích 2 số chẵn chia hết cho 4  =>n(n-1)(n+1) chia hết cho 4

Ta thấy trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 =>n(n-1)(n+1) chia hết cho 3

=>n(n-1)(n+1) chia hết cho 2.3.4=24(ĐPCM)
 

16 tháng 9 2016

undefined

16 tháng 9 2016

khó nhìn thiệt nhưng chắc đúng

9 tháng 11 2017

Ta có: \(n^4-14n^3+71n^2-154n+120\)

        = \(n^4-7n^3-7n^3+12n^2+49n^2+10n^2-84n-70n+120\)

        = \(\left(n^4-7n^3+12n^2\right)-\left(7n^3-49n^2+84n\right)+\left(10n^2-70n+120\right)\)

        = \(n^2\left(n^2-7n+12\right)-7n\left(n^2-7n+12\right)+10\left(n^2-7n+120\right)\)

        =\(\left(n^2-7n+10\right)\left(n^2-7n+12\right)\)

        =\(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)

Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 3.

Trong 4 số tự nhiên liên tiếp luôn có 2 số chẵn nên  \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 8.

Do \(\left(3,8\right)=1\)nên \(\left(n-6\right)\left(n-5\right)\left(n-4\right)\left(n-3\right)\)chia hết cho 24.

9 tháng 11 2017

Mk mới học lớp 6 nè

9 tháng 12 2015

n3-n

=n.[n2-1]

=n.[n-1].[n+1]

Ma n> 1

=>n.[n-1].[n+1]>0

Ta thấy n ;n-1;n+1 là ba số tự nhiên liên tiếp

=> chắc chắn rằng trong 3 số đấy có số chia hết cho 2 và có số chia hết cho 3

=>n.[n-1].[n-2] chia hết cho 6

=>n3​-n chia hết cho 6

Vay .....

 

22 tháng 1 2019

B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp

=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau

Suy ra: B chia hết 2x3x4

Hay B chia hết cho 24.

Bn chịu khó đọc nha!

15 tháng 9 2016

sao ban go duoc sao luy thua vay 

15 tháng 9 2016

4mn(m2 - n2) = 4.(m-n)mn(m+n) h này chia hết cho 4 và 6 nên chia hết cho 24