Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A= n(n+1)(2n+1)
*) CM A chia hết cho 2
+n chẵn --> n chia hết cho 2--> A chia hết cho 2
+n lẻ -->n+1 chẵn --> n+ 1chia hết cho 2--> A chia hết cho2
Vậy A chia hết cho 2(1)
*)CM A chia hết cho 3
+)n chia hết cho 3--> A chia hết cho 3
+)n chia 3 dư 1--> 2n chia 3 dư 2--> 2n+1 chia hết cho 3 --> A chia hết cho 3
+)n chia 3 dư 2--> n+1 chia hết cho 3 --> A chia hết cho 3
Vậy A chia hết cho 3(2)
Từ (1) và (2) --> A chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
ta co: 2n-3 chia het cho n+1
n+1 chia het cho n+1
=>2(n+1) chia het cho n+1
hay 2n+2 chia het cho n+1
=>(2n+2)-(2n-3) chia het cho n-1
5 chia het cho n-1
=> n-1 thuoc uoc cua 5 ={1;5;-1;-5}
=> n thuoc{2;6;0;-4}
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z