K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2-2x\left(y-1\right)+\left(y-1\right)^2-\left(y-1\right)^2+2y^2-4y+3\)

\(=\left(x-y+1\right)^2-y^2+2y+1+2y^2-4y+3\)

\(=\left(x-y+1\right)^2+y^2-2y+4\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+3>0\forall x;y\)

7 tháng 12 2017

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)

\(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)

7 tháng 12 2017
Ta có: x2+2y2-2xy+2x-4y+3 = (x2 +y2 +1 - 2xy + 2x - 2y) + (y2-2y+1) +1 = (x-y+1)2 + (y-1)2 + 1 Vì (x-y+1)2 ≥ 0 với mọi x,y ∈ R (y-1)2 ≥ 0 với mọi y ∈ R ⇔ (x-y+1)2 + (y-1)2 ≥ 0 với mọi x,y ∈R ⇔ (x-y+1)2 + (y-1)2 +1 ≥ 1 > 0 với mọi x,y ∈R Vậy x2+2y2-2xy+2x-4y+3 > 0 với mọi x,y ∈ R.
22 tháng 9 2020

Ta có x2 - 2x + 5

= (x2 - 2x + 4) + 1 

= (x - 2)2 + 1 \(\ge\)1 > 0 (đpcm)

b) Ta có : 4x2 + 4x - 3 = (4x2 + 4x + 1) - 4 = (2x + 1)2 - 4 \(\ge\) - 4 (đpcm)

22 tháng 9 2020

+) Ta có: \(x^2-2x+5=\left(x^2-2x+1\right)+4\)

                                         \(=\left(x-1\right)^2+4\)

    Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow\)\(\left(x-1\right)^2+4\ge4>0\forall x\)

 Vậy \(x^2-2x+5>0\)

13 tháng 6 2018

(1)

(x+1)(x-7)+17>0

<=>x^2-6x+9+1>0

<=>(x-3)^2+1>0(dpcm)

..

(7)

-y^2+4y-4-|x+1|≤0

<=>-(y-2)^2-|x+1|≤0

sum 2 so khong duong ko the la so (+)=>dpcm

1.(x+1)(x-7)+17=(x-3)2+1>0

2.-20-(x-5)(x+3)=-34-(x-1)2<0

3.-2(x+3)-(x-2)(x+2)=-(x+1)2-1<0

4.x2+y2+2x+2y+3=(x+1)2+(y+1)2+1>0

5.2x2+2x+y2+2y+5=2(x+1/2)2+(y+1)2+2>0

6.2x2+2y2+2xy+2x+4y+6=(x+y)2+(x+1)2+(y+2)2+1>0

7.-y2+4y-4-/x+1/=-(y-2)2-/x+1/≤0

7 tháng 5 2020

đề không sai đâu nếu đề như cậu thì tớ đã lm đc r

\n
NV
7 tháng 5 2020

Bạn ko hiểu về BĐT

\n\n

Để chứng minh 1 đề bài sai, bạn chỉ cần lấy 1 phản ví dụ là đủ

\n
3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

3 tháng 7 2016

\(\Leftrightarrow x^2-2.3.x+9+1=\left(x-3\right)^2+1\Rightarrow\hept{\begin{cases}\left(x-3\right)^2\ge0\\1>0\end{cases}}\Rightarrow\left(x-3\right)^2+1>0\)

\(\Leftrightarrow x^2-2.\frac{3}{2}.x+\frac{9}{4}+\frac{7}{4}=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\Leftrightarrow\hept{\begin{cases}\left(x-\frac{3}{2}\right)^2\ge0\\\frac{7}{4}>0\end{cases}}\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)

\(\Leftrightarrow2.\left(x^2+xy+y^2+1\right)=x^2+2xy+y^2+x^2+y^2+2=\left(x+y\right)^2+x^2+y^2+2\)

ta có \(\left(x+y\right)^2\ge0,x^2\ge0,y^2\ge0,2>0\Rightarrow\left(x+y\right)^2+x^2+y^2+2>0\)

\(\Leftrightarrow x^2-2xy+y^2+x^2-2.1x+1+y^2+2.2.y+4+3\)\(=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\)

Ta có \(=\left(x-y\right)^2\ge0,\left(x-1\right)^2\ge0,\left(y+2\right)^2\ge0,3>0\)\(\Rightarrow=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3>0\)

T i c k cho mình 1 cái nha mới bị trừ 50 đ

4 tháng 9 2018

a)\(x^2+4y^2-2x+4y+2\)

\(=\left(x^2-2x+1\right)+\left(4y^2+4y+1\right)\)

\(=\left(x-1\right)^2+\left(2y+1\right)^2\ge0\)(đúng)

b) Sửa đề

\(3y^2+x^2+2xy+2x+6y+3\)

\(=\left(x^2+y^2+2xy\right)+2y^2+2x+6y+3\)

\(=\left(x+y\right)^2+2\left(x+y\right)+1+2y^2+4y+2\)

\(=\left(x+y+1\right)^2+2\left(y+1\right)^2\ge0\) (đúng)