K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2020

x; y nguyên

pt <=> \(29x^2=2+28y^2⋮2\) mà 29 không chia hết cho 2 => x2 chia hết cho 2 => x chia hết cho 2

=> Tồn tại số nguyên k sao cho: x = 2k 

=> \(29.4k^2-28.y^2=2\)

<=> \(1=29.2k^2-14y^2\)chia hết cho 2 

=> Vô lí

=> pt ban đầu vô nghiệm 

7 tháng 11 2019

Xét \(x,y,z\ne0\)ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}< \left(x+y+z\right)^2\)(loại)

Xét trong 3 số có 2 số khác 0. Giả sử là \(x,y\ne0\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}< \left(x+y\right)^2\)(loại)

Vậy trong 3 số x, y, z phải có ít nhất 2 số bằng 0. Thế vô ta được phương trình có vô số nghiệm nguyên.

7 tháng 11 2019

Ý làm lộn. Đừng coi cái trên nha:

Dễ thấy với 2 trong 3 số bằng 0 thì phương trình có vô số nghiệm.

Giả sử 2 số đó là; x = y = 0 thì ta có:

\(z^2=z^2\) vô số nghiệm nguyên.

Vậy bài toán được chứng minh.

17 tháng 10 2019

tích cho t đi

17 tháng 10 2019

Ta có : \(x^5+29x=x^5-x+30x=x\cdot\left(x^4-1\right)+30x\)

\(=x\cdot\left(x^2-1\right)\cdot\left(x^2+1\right)+30x\)\(=x\cdot\left(x-1\right)\cdot\left(x+1\right)\cdot\left(x^2+1\right)+30x⋮3\)(tự chứng minh nha =)) )

Suy ra \(10\cdot\left(3y+1\right)⋮3\Leftrightarrow3y+1⋮3\left(\left(10,3\right)=1\right)\)

\(\Leftrightarrow1⋮3\)(Vô lý)

Vậy pt đã cho k có nghiệm nguyên(đpcm)

AH
Akai Haruma
Giáo viên
18 tháng 2 2017

Giải:

Giả sử hai phương trình trên đều có nghiệm, tức là:

\(\left\{\begin{matrix} \Delta_1'=1+6m>0\\ \Delta_2'=19-m^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{-1}{6}\\ -\sqrt{19}< m<\sqrt{19}\end{matrix}\right.\)

Để CM ít nhất một trong hai phương trình vô nghiệm, ta cần chỉ ra hệ bất phương trình trên vô nghiệm, từ đó dẫn đến vô lý, điều giả sử là sai

Nhưng hệ bất phương trình trên có tập nghiệm \(m\in \left(\frac{-1}{6},\sqrt{19}\right)\).

Đơn giản, thử thay \(m=1\) ta thấy cả hai phương trình đều có nghiệm.

Do đó, bài toán sai =)))

18 tháng 2 2017

Bài này thầy em chữa rồi, nó bị sai đề ạ :)

27 tháng 8 2020

Ta có:

\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)

Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)

Khi đó có ít nhất một phương trình có nghiệm

27 tháng 8 2020

còn c/m vô nghiệm thế nào z

7 tháng 4 2016

http://olm.vn/hoi-dap/question/67687.html

7 tháng 4 2015

Đặt u = 2x2 + 50x + 8; v = 8x + 50 => x2 + 29x + 29 = (u + v)/2

phương trình trở thành: (u+v)2/ 4 = u.v

=> u2 + 2uv + v2 = 4.uv =>  u2 - 2uv + v2 = 0 => (u - v)2 = 0 <=> u = v

=>  2x2 + 50x + 8= 8x + 50  =>  2x2 +  42x -42 = 0 <=>  x2 + 21x - 21 = 0 pt luôn có 2 nghiệm vì tích a.c < 0

theo Vi - et => x1 + x2 = -21; x1.x2 = -21

ta có:  x12 + x22 = (x1 + x2)2 - 2x1 x = (-21)2 - 42 = 399