\(\left(x+y+z\right)^2=x^2+y^2+x^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2019

Xét \(x,y,z\ne0\)ta có:

\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}< \left(x+y+z\right)^2\)(loại)

Xét trong 3 số có 2 số khác 0. Giả sử là \(x,y\ne0\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}< \left(x+y\right)^2\)(loại)

Vậy trong 3 số x, y, z phải có ít nhất 2 số bằng 0. Thế vô ta được phương trình có vô số nghiệm nguyên.

7 tháng 11 2019

Ý làm lộn. Đừng coi cái trên nha:

Dễ thấy với 2 trong 3 số bằng 0 thì phương trình có vô số nghiệm.

Giả sử 2 số đó là; x = y = 0 thì ta có:

\(z^2=z^2\) vô số nghiệm nguyên.

Vậy bài toán được chứng minh.

21 tháng 10 2017

bài 2

ta có \(\left(\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\right)^2\)

\(=\left(\sqrt{a}.\sqrt{\frac{8a^2+1}{a}}+\sqrt{b}.\sqrt{\frac{8b^2+1}{b}}+\sqrt{c}.\sqrt{\frac{8c^2+1}{c}}\right)^2\)\(=\left(A\right)\)

Áp dụng bất đẳng thức Bunhiacopxki ta có;

\(\left(A\right)\le\left(a+b+c\right)\left(8a+\frac{1}{a}+8b+\frac{1}{b}+8c+\frac{8}{c}\right)\)

\(=\left(a+b+c\right)\left(9a+9b+9c\right)=9\left(a+b+c\right)^2\)

\(\Rightarrow3\left(a+b+c\right)\ge\sqrt{8a^2+1}+\sqrt{8b^2+1}+\sqrt{8c^2+1}\)(đpcm)

Dấu \(=\)xảy ra khi \(a=b=c=1\)

21 tháng 10 2017

câu 1 dễ mà liên hợp đi x=\(\frac{4}{5}\)

26 tháng 8 2017

Bài 1 m bình phương 2 vế

13 tháng 5 2019
😴😴😴😴😴😴😴
13 tháng 5 2019

Khai triển tung hết đẳng thức đã cho ra rồi thu gọn ta được

\(2y^3+x^2y^2+xy+3x^2y-3xy^2=0\left(1\right)\)

Vì y khác 0 nên chia cả 2 vế của (1) cho y ta đc

\(2y^2+x^2y+x+3x^2-3xy=0\)

\(\Leftrightarrow x^2\left(3+y\right)-x\left(3y-1\right)+2y^2=0\left(2\right)\)

Vì y nguyên dương => y + 3 > 0 nên pt (2) là pt bậc 2 ẩn x

Ta có \(\Delta=-8y^3-15y^2-6y+1\)

Để pt có nghiệm thì \(\Delta\ge0\Leftrightarrow y\le\frac{1}{8}\)

mà y nguyên dương => y thuộc rỗng

=> Pt đã cho ko có nghiệm nguyên dương

12 tháng 10 2017

đặt x2=a;x2+y2=b;x2+y2+z2=c

pt \(\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

đến đó thì dễ rồi