Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để Vì (1) = 0 , (2) = 0
=> \(2x^2-\left(3m+2\right)x+12=4x^2-\left(9m-2\right)x+36\) = 0
\(\Leftrightarrow2x^2-3mx-2x+12=4x^2-9mx+2x+36=0\)
\(\Leftrightarrow6mx=2x^2+4x+24=0\)
\(\Leftrightarrow3mx=x^2+2x+12=0\) (*)
Vì \(x^2+2x+12=x^2+2x+1+11=\left(x+1\right)^2+11\ge11\) , mâu thuẫn với (*)
=> Không tìm được điều kiện để hai phương trình có 1 nghiệm chung
Ta có:
\(\Delta_1+\Delta_2+\Delta_3=a^2-4b+b^2-4c+c^2-4a=a^2+b^2+c^2-48\)
Dễ thấy:\(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=48\Rightarrow\Delta_1+\Delta_2+\Delta_3\ge0\)
Khi đó có ít nhất một phương trình có nghiệm
Giải:
Giả sử hai phương trình trên đều có nghiệm, tức là:
\(\left\{\begin{matrix} \Delta_1'=1+6m>0\\ \Delta_2'=19-m^2>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m>\frac{-1}{6}\\ -\sqrt{19}< m<\sqrt{19}\end{matrix}\right.\)
Để CM ít nhất một trong hai phương trình vô nghiệm, ta cần chỉ ra hệ bất phương trình trên vô nghiệm, từ đó dẫn đến vô lý, điều giả sử là sai
Nhưng hệ bất phương trình trên có tập nghiệm \(m\in \left(\frac{-1}{6},\sqrt{19}\right)\).
Đơn giản, thử thay \(m=1\) ta thấy cả hai phương trình đều có nghiệm.
Do đó, bài toán sai =)))
Bài này thầy em chữa rồi, nó bị sai đề ạ :)