\(x^2+\left(m-1\right)x+m^2=0\)(1)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2017

b/ \(\hept{\begin{cases}x^2+px+1=0\\x^2+qx+1=0\end{cases}}\)

Theo vi et ta có

\(\hept{\begin{cases}a+b=-p\\ab=1\end{cases}}\) và  \(\hept{\begin{cases}c+d=-q\\cd=1\end{cases}}\)

Ta có: \(\left(a-c\right)\left(b-c\right)\left(a-d\right)\left(b-d\right)\)

\(=\left(c^2-c\left(a+b\right)+ab\right)\left(d^2-d\left(a+b\right)+ab\right)\)

\(=\left(c^2+cp+1\right)\left(d^2+dp+1\right)\)

\(=cdp^2+pcd\left(c+d\right)+p\left(c+d\right)+c^2d^2+\left(c+d\right)^2-2cd+1\)

\(=p^2-pq-pq+1+q^2-2+1\)

\(=p^2-2pq+q^2=\left(p-q\right)^2\)

5 tháng 4 2017

a/ \(\hept{\begin{cases}x^2+2mx+mn-1=0\left(1\right)\\x^2-2nx+m+n=0\left(2\right)\end{cases}}\)

Ta có: \(\Delta'_1+\Delta'_2=\left(m^2-mn+1\right)+\left(n^2-m-n\right)\)

\(=m^2+n^2-mn-m-n+1\)

\(=\left(\frac{m^2}{2}-mn+\frac{n^2}{2}\right)+\left(\frac{m^2}{2}-m+\frac{1}{2}\right)+\left(\frac{n^2}{2}-n+\frac{1}{2}\right)\)

\(=\frac{1}{2}\left(\left(m-n\right)^2+\left(m-1\right)^2+\left(n-1\right)^2\right)\ge0\)

Vậy có 1 trong 2 phương trình có nghiệm

Nhiều thế, chắc phải đưa ra đáp thôi

19 tháng 5 2023

 

                                      3(x1+x2)=x1x23(x1
+x2
)
=
x1
x2

27 tháng 3 2020

Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)

Để phương trình có 2 nghiệm x1; x2 điều kiện là: 

\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)

Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)

<=> \(m^2+m-2=0\)

<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.

17 tháng 5 2019

Giả sử 2 phương trình đã cho đều vô nghiệm

=> \(\Delta_1< 0\Leftrightarrow a_1^2-4b_1< 0\Leftrightarrow a_1^2< 4b_1\)

     \(\Delta_2< 0\Leftrightarrow a_2^2-4b_2< 0\Leftrightarrow a_2^2< 4b_2\)

\(\Rightarrow a_1^2+a_2^2< 4\left(b_1+b_2\right)\)(1)

Lại có: \(a_1.a_2\ge2\left(b_1+b_2\right)\)

\(\Leftrightarrow2a_1.a_2\ge4\left(b_1+b_2\right)\) (2)

Từ (1) và  (2) \(\Rightarrow a_1^2+a_2^2< 2a_1a_2\) (3)

Mặt khác:\(\left(a_1-a_2\right)^2\ge0\Leftrightarrow a_1^2+a_2^2\ge2a_1_1b_1\)trái với (3)

=> giả sử sai

=> ít nhất một trong 2 phương trình đã cho có nghiệm.

Sai thì thôi nhé~

16 tháng 5 2017

a/ Chứng mính 2 nghiệm phân biệt thì \(\Delta>0\)

b/ Dùng định lí vi-ét là ra nha bạn

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán