Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(\Delta'=\left(m-1\right)^2-m^2+m-1=m^2-2m+1-m^2+m-1=-m.\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow-m\ge0\Leftrightarrow m\le0\)
Theo vi ét:
\(\hept{\begin{cases}x_1+x_2=-2\left(m-1\right)\\x_1.x_2=m^2-m+1=\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\)
\(\left|x_1\right|+\left|x_2\right|=4\Leftrightarrow x_1+x_2+2\left|x_1.x_2\right|=16\)
\(\Leftrightarrow1-2m+2\left|m^2-m+1\right|=16\)
\(\Leftrightarrow1-2m+2m^2-2m+2=16\)(Vì \(m^2-m+1>0\Rightarrow\left|m^2-m+1\right|=m^2-m+1\))
\(\Leftrightarrow2m^2-4m-13=0\)
Đến đây bạn tự giải \(\Delta\)tìm m đối chiếu điều kiện là ok.
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
dùng đen ta phẩy để giải pt.
kết quả khi m > \(\frac{5}{6}\)thì pt có nghiệm
theo vi-ét ta có: x1 + x2 = \(\frac{-b}{a}=\frac{2\left(m-2\right)}{1}=2\left(m-2\right)\)(1)
x1 . x2 = \(\frac{c}{a}=\frac{m^2+2m-3}{1}=m^2+2m-3\)(2)
theo đầu bài ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}\)
<=> \(\frac{x_2+x_1}{x_1.x_2}=\frac{x_1+x_2}{5}\)(3)
thay (1) và (2) vào (3) r tính m. kết quả khi m=2 thì pt có nghiệm thỏ mãn đk đó.
Để phương trình có hai nghiệm thì \(\Delta'>0\).
\(\Delta'=\left(m-2\right)^2+\left(m-1\right)=m^2-3m+3=\left(m-\frac{3}{2}\right)^2+\frac{3}{4}>0\)
Do đó phương trình luôn có hai nghiệm phân biệt \(x_1,x_2\).
Theo Viet:
\(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1x_2=-m+1\end{cases}}\)
\(x_1^2-2x_1x_2+x_2^2+4x_1^2x_2^2=\left(x_1+x_2\right)^2-4x_1x_2+4x_1^2x_2^2\)
\(=4\left(m-2\right)^2+4\left(m-1\right)+4\left(m-1\right)^2=4\left(2m^2-5m+4\right)=4\)
\(\Leftrightarrow2m^2-5m+4=1\)
\(\Leftrightarrow\orbr{\begin{cases}m=\frac{3}{2}\\m=1\end{cases}}\)
Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)
Để phương trình có 2 nghiệm x1; x2 điều kiện là:
\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)
Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)
Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)
<=> \(m^2+m-2=0\)
<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.