Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, n2+n+6=n(n+1)+6
Vì n(n+1) là tích 2 số liên tiếp => n(n+1) có c/s tận cùng là 0,2,6
=> n(n+1)+6 có c/s tận cùng là 6,8,2 không chia hết cho 5
=> n2+n+6 không chia hết cho 5
b, n3-n=n(n2-1)=n(n-1)(n+1)
Vì n(n-1)(n+1) là tích 3 số liên tiếp => n(n-1)(n+1) chia hết cho 6
=>n3-n chia hết cho 6
a) ta có n2+n+6 = n(n+1) + 6
vì n(n+1) là tích hai số nguyên liên tiếp => n(n+1) có tận cùng là một trong các số 0;2;6
=> n(n+1) + 6 có tận cùng là một trong các số 6;8;2 ko chia hết cho 5 vì muốn chia hết cho 5 phải có tận cùng là 0 hoặc 5
vậy n2+n+6 ko chia hết cho 5 (đpcm)
b) ta có n3-n = n3- n2+n2-n = (n3-n2)+(n2-n) = n(n2-n)+(n2-n) = (n+1)(n2-n) = (n+1)n(n-1)
vì (n+1)n(n-1) là tích của 3 số nguyên liên tiếp nên tích đó chia hết cho 2 và 3 => (n+1)n(n-1) chia hết cho 6
=> n3-n chia hết cho 6 (đpcm)
hok tốt và nhớ k cho mik nha
\(5^5-5^4+5^3=5^3.5^2-5^3.5+5^3=5^3.(5^2-5+1)\)
\(=5^3.21=5^3.3.7 \vdots 7 \Rightarrow 5^5-5^4+5^3\vdots 7\)
Tương tự :
b,\(7^6+7^5-7^4=7^4.(7^2+7-1)=7^4.55=7^4.5.11\vdots11\)
\(\Rightarrow 7^6+7^5-7^4\vdots 11\)
c,\(24^{54}.54^{24}.2^{10}=(2^3.3)^{54}.(2.3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.3^{54}.2^{24}.(3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.(2^3)^8.2^3.(3^2)^{27}.(3^2)^{36}.2^{7}\)
\(=(2^3)^{63}.(3^2)^{63}.2^7=(2^3.3^2)^{63}.2^7=72^{63}.2^7 \vdots 72^{63}\)
d,\(3^{n+3}+3^{n+1}+2^{n+3}.2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+3}.2^{n+2}\)
\(=3^{n+1}.(3^2+1)+2^{2n+5}=10.3^{n+1}+2.2^{2n+4}\)
\(=2.(5.3^{n+1}+2^{2n+4})\)
Lỗi đề rồi!!!!!!!!!! tớ thay số vào không đúng!
làm câu đầu nhé.
7^6+7^5-7^4=7^4* 7^2 + 7^4* 7^1 -7^4 * 1
=7^4 * (7^2+7^1-1(
= 7^4 * ( 49+7-1(
=7^4* 55
suy ra chia hết cho 55
các câu còn lại tương tự nhé bạn
a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)
suy ra 8^7-2^18 chia hết cho 14
a) 8^7 = (2^3)^7 = 2^21
Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)
b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)
c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)
d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54
72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126
Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24
Rõ ràng 2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)
e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)
Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)
\(A=5^n\left(5^n+1\right)-6^n\left(3^n+2^n\right)=25^n+5^n-18^n-12^n\)
Ta có: 25≡4 (mod 7) và 18≡4 (mod 7)
\(\Rightarrow25^n\text{≡}4^n\left(mod7\right)\)và \(18^n\text{≡}4\left(mod7\right)\)
\(\Rightarrow25^n-18^n⋮7\)(1)
Chứng minh tương tự, ta được \(5^n-12^n⋮7\)(2)
Từ (1) và (2) suy ra \(25^n+5^n-18^n-12^n⋮7\)
Tương tự như trên ta cũng chứng minh được \(25^n+5^n-18^n-12^n⋮13\)
Mà (7;13) = 1 nên \(25^n+5^n-18^n-12^n⋮91\)
Vậy A chia hết cho 91 với mọi n thuộc N (đpcm)
b) Giải:
Đặt \(A=n^3+3n^2-n-3\) ta có
\(A=n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n^2-1\right)\left(n+3\right)=\left(n+1\right)\left(n-1\right)\left(n+3\right)\)
Thay \(n=2k+1\left(k\in Z\right)\) ta được:
\(A=\left(2k+2\right)2k\left(2k+4\right)=\) \(2\left(k+1\right).2k.2\left(k+2\right)\)
\(=8\left(k+1\right)k\left(k+2\right)\)
Mà \(\left(k+1\right)k\left(k+2\right)\) là tích của \(3\) số tự nhiên nhiên tiếp nên chia hết cho \(6\) \(\Rightarrow A⋮8.6=48\)
Vậy \(n^3+3n^2-n-3\) \(⋮48\forall x\in Z;x\) lẻ (Đpcm)
a: \(=n\left(n+1\right)+6\)
Vì n;n+1 là tích của hai số liên tiếp
nên n(n+1) có chữ số tận cùng là 0;2;6
=>Nếu n(n+1)+6 thì sẽ có chữ số tận cùng là 6;8;12
=>n(n+1)+6 ko chia hết cho 5
b: =n(n-1)(n+1)
Vì n;n-1;n+1 là ba số liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)