Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7^6-7^5-7^4=7^4\left(7^2-7-1\right)=7^4.55\)
mà 55 chi hết cho 11
suy ra dãy số trên chia hết cho 11
d) 2454.524.210 = (23.3)54.524.210 = 2 162.354.524.210 = 2172.354.524
7263 = (23.32)63 = 2189.3126 chia hết cho 2172.354
=> 7263 chia hết cho 2454.524.210
Đề phải sửa lại là: 2454.524.210 chia hết 7263
e) ) 3n+2-2n+2+3n+2n = 3n .(32 +1) + 2n (1 + 22) = 10.3n + 5.2n
10.3n chia hết cho 10; 5.2n = 10.2n-1 chia hết cho 10
=> 10.3n + 5.2n chia hết cho 10 => đpcm
\(5^5-5^4+5^3=5^3.5^2-5^3.5+5^3=5^3.(5^2-5+1)\)
\(=5^3.21=5^3.3.7 \vdots 7 \Rightarrow 5^5-5^4+5^3\vdots 7\)
Tương tự :
b,\(7^6+7^5-7^4=7^4.(7^2+7-1)=7^4.55=7^4.5.11\vdots11\)
\(\Rightarrow 7^6+7^5-7^4\vdots 11\)
c,\(24^{54}.54^{24}.2^{10}=(2^3.3)^{54}.(2.3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.3^{54}.2^{24}.(3^3)^{24}.2^{10}\)
\(=(2^3)^{54}.(2^3)^8.2^3.(3^2)^{27}.(3^2)^{36}.2^{7}\)
\(=(2^3)^{63}.(3^2)^{63}.2^7=(2^3.3^2)^{63}.2^7=72^{63}.2^7 \vdots 72^{63}\)
d,\(3^{n+3}+3^{n+1}+2^{n+3}.2^{n+2}=3^{n+1}.3^2+3^{n+1}+2^{n+3}.2^{n+2}\)
\(=3^{n+1}.(3^2+1)+2^{2n+5}=10.3^{n+1}+2.2^{2n+4}\)
\(=2.(5.3^{n+1}+2^{2n+4})\)
Lỗi đề rồi!!!!!!!!!! tớ thay số vào không đúng!
a)
\(5^5-5^4+5^3=5^3\cdot\left(5^2-5+1\right)=5^3\cdot21⋮7\left(đpcm\right)\)
@_@ dài quá
b) \(7^6+7^5-7^4=7^4\cdot\left(7^2+7-1\right)=7^4\cdot55⋮11\left(đpcm\right)\)
còn lại tương tự thôi bạn
@_@ ^^
a) \(7^6+7^5-7^4=7^4.7^2+7^4.7+7^4.1\)
\(=7^4.\left(7^2+7-1\right)\)
\(=7^4.55\)
Mà \(55⋮11\Rightarrow7^4.55⋮11\Leftrightarrow7^6+7^5-7^4⋮11\left(đpcm\right).\)
b) \(10^9+10^8+10^7=10^6.10^3+10^6.10^2+10^6.10\)
\(=10^6.\left(10^3+10^2+10\right)\)
\(=10^6.1110\)
Mà \(1110⋮222\Rightarrow10^6.110⋮222\Leftrightarrow10^9+10^8+10^7⋮222\left(đpcm\right).\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(=3^{28}-3^{27}-3^{26}\)
\(=3^{26}.3^2+3^{26}.3+3^{26}.1\)
\(=3^{26}.\left(3^2+3+1\right)\)
\(=3^{24}.3^2.5\)
\(=3^{24}.45\)
Mà \(45⋮45\Rightarrow3^{24}.45⋮45\Leftrightarrow81^7-27^9-9^{13}⋮45\left(đpcm\right).\)
d) \(24^{54}.54^{24}.2^{10}=\left(8.3\right)^{54}.\left(27.2\right)^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{34}\)
\(=2^{196}.3^{126}\)
\(=2^{189}.2^7.3^{126}\)
\(=\left[\left(2^3\right)^{63}.\left(3^2\right)^{63}\right].2^7\)
\(=\left(8^{63}.9^{63}\right).2^7\)
\(=72^{63}.2^7\)
Mà \(72^{63}⋮72^{63}\Rightarrow72^{63}.2^7⋮72^{63}\Leftrightarrow24^{54}.54^{24}.2^{10}⋮72^{63}\left(đpcm\right).\)
1,2^5 < 2^n < 2^7 => n = 6
2,2^4 \(\ge\)2^n > 2^2 => n= 3 ; 4
3, 3^ 3 \(\le3^n\le3^4\) => n = 3 ; 4
Bài 2
a, 5^5 - 5^4 + 5^3 = 5^3(5^2 - 5 + 1) = 5^3 .21=3.5^3.7 chia hêt cho 7
b,7^6 + 7^5 -7^ 4 =7^4 ( 7^2 + 7 - 1 ) = 7^ 4 .55=11.5.7^4 chia hết cho 11
a) 55 - 54 + 53 = 53(52-5 +1) = 53.21 chia hết cho 7
b) 76 - 75 + 74 ( Sai đề )
c) 2454.5424.210
= (23.3)54.(33.2)24.210
= (23)54.354.(33)24.224.210
= 2162.354.372.224.210
= 2196.3126
Mà 7263 = (23.32)63=(23)63.(32)63 = 2189.3126
Lại có: 2196.3126 chia hết cho 2189.3126
=> 2454.5424.210 chia hết cho 7263
a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)
suy ra 8^7-2^18 chia hết cho 14
a) 8^7 = (2^3)^7 = 2^21
Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)
b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)
c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)
d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54
72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126
Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24
Rõ ràng 2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)
e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)
Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)