K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2015

H = 0,5 (20072005 - 20032003)

H = (20072005 - 20032003) / 2

20072005 tận cùng là số lẻ

20032003 tận cùng cũng là số lẻ

lẻ trừ lẻ bằng chẵn

Số chẵn sẽ chua hết cho 2

Suy ra H chua hết cho 2

Và H là số nguyên

23 tháng 9 2015

2007 ; 2003 lẻ => 20072005 và 20032003 lẻ => Hiệu 20072005 - 20032003 chẵn =>  20072005 - 20032003 chia hết cho 2

=>  (20072005 - 20032003)/2 là số nguyên Hay  0,5. (20072005 - 20032003) là số nguyên

2 tháng 11 2017

Ta có \(0.5\left(2007^{2005}-2003^{2003}\right)\)=  \(\frac{2007^{2005}-2003^{2003}}{2}\)

Vì \(2007^{2005}\)lẻ và \(2003^{2003}\)lẻ

\(\Rightarrow2007^{2005}-2003^{2003}\)chẵn

 \(\Rightarrow2007^{2005}-2003^{2003}⋮2\)

\(\Rightarrow0.5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên (đpcm)

13 tháng 11 2017

mình nè kết bạn đi

13 tháng 11 2017

Nhỏ quá

18 tháng 4 2018

1)      \(0,5\left(2007^{2005}-2003^{2003}\right)=\frac{1}{2}\left(2007^{2005}-2003^{2003}\right)\)

\(=\frac{2007^{2005}-2003^{2003}}{2}\)

=> Để \(0,5\left(2007^{2005}-2003^{2003}\right)\) là số nguyên thì \(2007^{2005}-2003^{2003}⋮2\)

Có \(2007^{2005}\)và \(2003^{2003}\)là số lẻ

=> \(2007^{2005}-2003^{2003}\)là số chẵn

=> \(2007^{2005}-2003^{2003}⋮2\)

=> \(0,5\left(2007^{2005}-2003^{2003}\right)\)là số nguyên

21 tháng 4 2018

bữa trước mình chưa làm được câu 2

2)  Có: \(\frac{\overline{ab}}{\overline{bc}}=\frac{a}{c}\)

=> \(\frac{10a+b}{10b+c}=\frac{a}{c}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\frac{10a+b}{10b+c}=\frac{a}{c}=\frac{10a+b-a}{10b+c-c}=\frac{9a+b}{10b}=\frac{111\left(9a+b\right)}{111.10b}=\frac{999a+111b}{1110b}\)

=> \(\frac{a}{c}=\frac{999a+111b}{1110b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{c}=\frac{999a+111b}{1110b}=\frac{a+999a+111b}{c+1110b}=\frac{1000a+100b+10b+b}{1000b+100b+10b+c}\)\(=\frac{\overline{abbb}}{\overline{bbbc}}\)

=> \(\frac{\overline{abbb}}{\overline{bbbc}}=\frac{a}{c}\)