Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho n thuộc N và n+1 là số chính phương. CMR : ( n+2 ).( n+3 ).( n+4 ) không phải là số chính phương
1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)
Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.
2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương
\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)
\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)
Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:
+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)
\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)
+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)
\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.
3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:
---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)
Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau
Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau
---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)
Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)
Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)
-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)
Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.
Đề phải cho x thuộc Z chứ bạn
Xét : x^5-x = x.(x^4-1) = x.(x^2-1).(x^2+1) = (x-1).x.(x+1).(x^2+1)
Ta thấy x-1;x;x+1 là 3 số nguyên liên tiếp nên có 1 số chia hết cho 3 => x^5-x chia hết cho 3
=> x^5-x+2 chia 3 dư 2 => x^5-x+2 ko phải là số chính phương ( vì số chính phương chia 3 dư 0 hoặc 1 )
=> ĐPCM
Tk mk nha
Xét \(x^5-x=x\left(x^4-1\right)=x\left(x^2-1\right)\left(x^2+1\right)=x\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\)
Ta thấy x-1, x, x+1 là ba số nguyên liên tiếp
\(\Rightarrow x\left(x-1\right)\left(x+1\right)⋮3\)
\(\Rightarrow x^5-x⋮3\)
\(\Rightarrow x^5-x+2\equiv2\left(mod3\right)\)
Vậy x5-x+2 không phải số chính phương (do x5-x+2 chia 3 dư 0 và 1)
Gọi 5 số đó là : a- 2 ; a - 1 ; a ; a + 1 ; a + 2
Tổng Bình phương 5 số là :
( a - 2 )^ 2 + ( a- 1 )^2+ a^2 + ( a+ 1 )^2 + ( a+ 2 )^2
=> a^2 - 4a + 4 + a^2 - 2a + 1 + a^2 + a^2 + 2a + 1 + a^2 + 4a + 4
= 5a^2 + 10
= 5 ( a^ 2 + 2 ) chia hết cho 5 (1)
Nhưng 5 ( a^2 + 2 ) không chia hết cho 25 (2)
Từ (1) và (2) => Tổng bình phương 5 số ko là số chính phương
Gọi 5 STN liên tiếp là n−2;n−1;n;n+1;n+2
Ta có A=(n−2)2+(n−1)2+n2+(n+1)2+(n+2)2
=5n2+10=5(n2+2)
n2 không tận cùng là 3;8=>n2+2 không tận cùng là 5 hoặc 0=>n2+2 không chia hết cho 5
=>5(n2+2) không chia hết cho 25=> A không phải SCP
tong 4 so chinh phuong le 1 la so chinh phuong
2 ko la so chinh phuong
tong 5 so chinh phuong le ko la so chinh phuong
mik làm thế này có đúng không nhỉ ?
a) Ta có :
abab = ab . 101
Để abab là số chính phương thì ab chỉ có thể bằng 101.
Mà ab là số có hai chữ số
=> abab không phải là số chính phương
b) Ta có :
abcabc = abc . 1001
Để abcabc là số chính phương thì abc chỉ có thể bằng 1001.
Mà abc là số có 3 chữ số
=> abcabc không phải là số chinh phương
c) Ta có :
ababab = ab . 10101
Để ababab là số chính phương thì ab chỉ có thể bằng 10101.
Mà ab là số có hai chữ số.
=> ababab không phải là số chính phương.
Kết luận : abab ; abcabc ; ababab ko phải là số chính phương (đpcm)
bn án vào đúng 0 sẽ ra kết quả mình giải rồi