K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: B=1+2+3+...+100

=(1+100)+(2+99)+...+(50+51)

\(=101\cdot50\)

Ta có: \(A=1^3+2^3+3^3+...+100^3\)

\(=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(50^3+51^3\right)\)

\(=\left(1+100\right)\cdot\left(1-100+100^2\right)+\left(2+99\right)\left(4-198+99^2\right)+...+\left(50+51\right)\left(2500+50\cdot51+51^2\right)\)

\(=101\cdot\left(1-100+100^2+4-198+99^2+...+50^2-50\cdot51+51^2\right)⋮101\)

Ta có: \(A=1^3+2^3+3^3+...+100^3\)

\(=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...50^3+100^3\)

\(=\left(1+99\right)\left(1-99+99^2\right)+\left(2+98\right)\cdot\left(4-196+98^2\right)+...+50^3+50^3\cdot2^3⋮50\)

mà (50,101)=1

nên \(A⋮50\cdot101=B\)

hay \(A⋮B\)(đpcm)

23 tháng 7 2020

giỏi Toán dzay :v

23 tháng 7 2020

Má giỏi hơn tui :v

3 tháng 11 2017

https://www.toaniq.com/tinh-gia-tri-bieu-thuc-a-13-23-33-1003/

bạn vào táp này khác có lời giải

18 tháng 10 2015

Ta có :

B=101.50

gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

⇒A⋮50.101⇒A⋮B

18 tháng 10 2015

Ta có :

B=101.50

A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101

A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50

Mà : (101;50)=1

A⋮50.101⇒AB

30 tháng 1 2020

Câu 2:

Violympic toán 8

Câu 3:Hỏi đáp Toán

Tham khảo nhé!

TL
30 tháng 1 2020

Câu 2:

Tham khảo ở đây

Câu hỏi của Le Thi Hong Van - Toán lớp 6 - Học toán với OnlineMath

2 tháng 12 2017

câu dễ trước nhé:

B = 1 + 2+ 3 +4 +5 +......+ 100

B có số hạng là:

(100 - 1 ) : 1 + 1 = 100 số hạng

B có tổng là:

(100 + 1 ) x 100 : 2 = 5050

A = 1+ 23 + 3+.......+1003                                                                                                                                                                        A= 1 + ( 2 -1 ) x2 x ( 2 + 1) + 2 +( 3 - 1) x 3 x( 3 + 1 ) +3 +.....+( 100-1) x 100 x ( 100 +1 ) + 100  ( vì 13 =1, 2 = ( 2-1 ) x 2 x ( 2 + 1) +2 ,....) 

A =1 + 1x 2 x3 + 2 + 2 x 3 x 4 + 3 +........+ 99 x 100 x 101 + 100

A = ( 1 x 2 x3 + 2 x3 x4 + x3x4 x5 +.....+ 99 x100 x101) - ( 1 +2 +3+ 4 +....+ 100)

đặt M = 1 x 2 x3 + 2 x3 x4 + ......+ 99 x100x101 

   M x 4 = 1 x2 x3 x4 + 2 x3 x4 x4 + ......+ 99 x100 x101 x4

   M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x( 5 - 1) +........+  99 x 100 x 101 x ( 102 - 98)

   M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x 5 - 1 x 2 x3 x4 +.....+ 99 x 100 101 x102 - 98 x99 x100 x101

   M x 4 = 99 x100 x101 x102

   M x 4 =101989800

   M       = 101989800: 4

   M       = 25497450

đặt N = 1 + 2 +3 + 4 + 5 +.....+ 100 

đáp án là câu B phía trên = 5050

A = M-N = 25497450 - 5050=25487350

2 tháng 12 2017

ta có A = 13 +23+....+1003

          B  = 1 + 2 + 3 + ...+ 100

vì mỗi số hạng của A đều là lập phương của 1 số hạng ở B

theo tính chất chia hết của tổng thì số hạng nào cũng chia hết cho 1 số thì tổng cũng chia hết cho só đó

vậy A chia hết cho B

30 tháng 1 2020

Câu 1 .

A = 13 + 23 + 33 + ... + 1003 

   = 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100

   = ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )

   = ( 1 + 2 + 3 + .... + 100 )3

Do đó A \(⋮\)1 + 2 + 3 + ... + 100

Câu 2 : 

+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)

Do đó 2100  có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751             ( 1) 

+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)

Do đó 2100 có 3 chữ số tận cùng chia hết cho 8            ( 2)

Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376 

Mà \(376\equiv1\left(mod125\right)\)

=> 2100 chia 125 dư 1

Vậy 2100 chia 125 có số dư là 1

Hok tốt

# owe

30 tháng 1 2020

Câu 1 hình như sai phải ko bạn, sao từ phép nhân sang phép cộng dễ thế?

4 tháng 3 2015

nâng cao và phat trien toán 8 tap 1....

 

4 tháng 3 2015

troi!minh ko co sach nay