Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
B=101.50
gt⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
gt⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50
Mà : (101;50)=1
⇒A⋮50.101⇒A⋮B
Ta có :
B=101.50
⇒A=(1003+13)+(993+23)+...+(503+513)⇒A⋮101
⇒A=(993+13)+(983+23)+...+(493+513)+503+1003⇒A⋮50
Mà : (101;50)=1
⇒A⋮50.101⇒A⋮B
https://www.toaniq.com/tinh-gia-tri-bieu-thuc-a-13-23-33-1003/
bạn vào táp này khác có lời giải
Câu 2:
Tham khảo ở đây
Câu hỏi của Le Thi Hong Van - Toán lớp 6 - Học toán với OnlineMath
A = 1 + 2 + 3 + ... + 99 + 100
Tổng A có số số hạng là \(\frac{100-1}{1}+1=100\)(số hạng)
=>\(A=\frac{\left(100+1\right).100}{2}=4950\)
B = 12 + 22 + 32 + ... + 992 + 1002
Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath
C = 13 + 23 + 33 + ... + 993 + 1003
https://lop67.tk/hoidap/16575/ti%CC%81nh-a-1-3-2-3-3-3-100-3-v%C3%A0-b-1-3-2-3-3-3-4-3-99-3-100-3
Câu 1 .
A = 13 + 23 + 33 + ... + 1003
= 1 .1.1 + 2.2.2 + 3.3.3 + ... + 100.100.100
= ( 1 + 2 + 3 + .... 100 ) + ( 1 + 2 + 3 + ... + 100 ) + ( 1 + 2 + 3 + ... + 100 )
= ( 1 + 2 + 3 + .... + 100 )3
Do đó A \(⋮\)1 + 2 + 3 + ... + 100
Câu 2 :
+, Ta có : \(\left(2,125\right)=1\Rightarrow2^{100}\equiv1\left(mod125\right)\)
Do đó 2100 có thể có tận cùng là : 001, 251 ,376, 501, 626 , 751 ( 1)
+, Lại có : \(2^4\equiv0\left(mod8\right)\Rightarrow2^{100}\equiv0\left(mod8\right)\)
Do đó 2100 có 3 chữ số tận cùng chia hết cho 8 ( 2)
Từ (1) và (2) => 2100 có 3 chữ số tận cùng là : 376
Mà \(376\equiv1\left(mod125\right)\)
=> 2100 chia 125 dư 1
Vậy 2100 chia 125 có số dư là 1
Hok tốt
# owe
Câu 1:
a: \(A=\left(100+99\right)\left(100-99\right)+\left(98+97\right)\left(98-97\right)+...+\left(2-1\right)\left(2+1\right)\)
\(=100+99+98+...+3+2+1\)
=5050
b: \(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\cdot...\cdot\left(2^{64}+1\right)+1\)
\(=\left(2^4-1\right)\cdot\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{32}-1\right)\left(2^{32}+1\right)\left(2^{64}+1\right)+1\)
\(=\left(2^{64}-1\right)\left(2^{64}+1\right)+1\)
\(=2^{128}\)
c: \(\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=\left(a+b\right)^2+2c\left(a+b\right)+c^2+\left(a+b\right)^2-2c\left(a+b\right)+c^2-2\left(a+b\right)^2\)
\(=2c^2\)
câu dễ trước nhé:
B = 1 + 2+ 3 +4 +5 +......+ 100
B có số hạng là:
(100 - 1 ) : 1 + 1 = 100 số hạng
B có tổng là:
(100 + 1 ) x 100 : 2 = 5050
A = 13 + 23 + 33 +.......+1003 A= 1 + ( 2 -1 ) x2 x ( 2 + 1) + 2 +( 3 - 1) x 3 x( 3 + 1 ) +3 +.....+( 100-1) x 100 x ( 100 +1 ) + 100 ( vì 13 =1, 2 3 = ( 2-1 ) x 2 x ( 2 + 1) +2 ,....)
A =1 + 1x 2 x3 + 2 + 2 x 3 x 4 + 3 +........+ 99 x 100 x 101 + 100
A = ( 1 x 2 x3 + 2 x3 x4 + x3x4 x5 +.....+ 99 x100 x101) - ( 1 +2 +3+ 4 +....+ 100)
đặt M = 1 x 2 x3 + 2 x3 x4 + ......+ 99 x100x101
M x 4 = 1 x2 x3 x4 + 2 x3 x4 x4 + ......+ 99 x100 x101 x4
M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x( 5 - 1) +........+ 99 x 100 x 101 x ( 102 - 98)
M x 4 = 1 x 2 x3 x4 + 2 x 3 x4 x 5 - 1 x 2 x3 x4 +.....+ 99 x 100 101 x102 - 98 x99 x100 x101
M x 4 = 99 x100 x101 x102
M x 4 =101989800
M = 101989800: 4
M = 25497450
đặt N = 1 + 2 +3 + 4 + 5 +.....+ 100
đáp án là câu B phía trên = 5050
A = M-N = 25497450 - 5050=25487350
ta có A = 13 +23+....+1003
B = 1 + 2 + 3 + ...+ 100
vì mỗi số hạng của A đều là lập phương của 1 số hạng ở B
theo tính chất chia hết của tổng thì số hạng nào cũng chia hết cho 1 số thì tổng cũng chia hết cho só đó
vậy A chia hết cho B