Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
1. 2x3 + 4x2 + 5x + 3
= 2x3 + 2x2 + 2x2 + 2x + 3x + 3
= 2x2( x + 1 ) + 2x( x + 1 ) + 3( x + 1 )
= ( x + 1 )( 2x2 + 2x + 3 )
=> ( 2x3 + 4x2 + 5x + 3 ) : ( x + 1 ) = 2x2 + 2x + 3
2.a) 2x3 - 3x2 + x + a chia hết cho x + 2
Ta có đa thức chia có bậc 3, đa thức bị chia có bậc 1
=> Thương bậc 2
Lại có hệ số cao nhất là 2 nên đặt đa thức thương là 2x2 + bx + c
=> 2x3 - 3x2 + x + a chia hết cho x + 2
⇔ 2x3 - 3x2 + x + a = ( x + 2 )( 2x2 + bx + c )
⇔ 2x3 - 3x2 + x + a = 2x3 + bx2 + cx + 4x2 + 2bx + 2c
⇔ 2x3 - 3x2 + x + a = 2x3 + ( b + 4 )x2 + ( c + 2b )x + 2c
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}b+4=-3\\c+2b=1\\2c=a\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-7\\c=15\\a=30\end{cases}}\)
Vậy a = 30
b) x2 - 3x + 3 chia x - a được thương là x + 3 dư 21
=> x2 - 3x + 3 = ( x - a )( x + 3 ) + 21
⇔ x2 - 3x + 3 - 21 = x2 + 3x - ax - 3a
⇔ x2 - 3x - 18 = x2 + ( 3 - a )x - 3a
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}3-a=-3\\-3a=-18\end{cases}}\Leftrightarrow a=6\)
Vậy a = 6
c) Tí mình gửi link nhé
c) https://imgur.com/TzbHKPG
Bạn chịu khó đánh máy tí nhé ;-;
Bài 1 :
a) x3y3 + x2y2 + 4
= (xy)3 + ( xy)2 + 4
= ( xy )3 + 2( xy )2 - (xy)2 - 2xy + 2xy + 4
= (xy)2 ( xy + 3 ) - xy (xy+22 ) + 2 ( xy+ 2 )
= ( xy + 2 ) [ ( xy)2 -xy + 2 ]
b) 2x4 -5x3 + 2x2 - x + 2
= 2x4 - 4x3 -x3 + 2x2 - x + 2
= 2x3 (x- 2 ) - x2 ( x - 2 ) - ( x - 2 )
= ( x -2 ) . ( 2x3 -x2 -1)
= (x-2 ) . ( 2x3 -2x2 + x2 - x + x - 1 )
= ( x- 2 ) . [ 2x2 . ( x-1 ) + x . ( x-1 ) + ( x- 1 ) ]
= ( x- 2 ) . ( x- 1 ) . ( 2x2 + x + 1 )
Phần còn lại bạn làm tương tự
Bài 2 :
Vì f(x) chia cho x - 3 thì dư 2 => f(3) = 2
f(x) chia cho x + 4 thì dư 9 => f(-4) = 9
f(x) chia cho ( x2 + x - 12 ) được thương là ( x2 + 3 ) và còn dư
=> f ( x ) =( x2 + 3 ) ( x2 + x -12 ) + ( cx + d ) = ( x2 + 3 . ( x-3 ) . ( x + 4 ) + ( cx + d )
Ta có : \(\hept{\begin{cases}f\left(3\right)=3c+d=2\\f\left(-4\right)=-4c+d=9\end{cases}\Rightarrow\hept{\begin{cases}d=2-3c\\d=9+4c\end{cases}\Rightarrow}2-3c=9}+4c\Rightarrow-3c-4c=9-2\)
\(\Rightarrow-7c=7\Rightarrow c=-1\).Với c = 1 => d=5
Vậy f ( x ) = ( x2 + 3 ) .( x2 + x -12 ) - x + 5 = x4 + x3 - 9x2 + 2x - 31
giỏi Toán dzay :v
Má giỏi hơn tui :v