Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\hept{\begin{cases}\left(3n+8\right)⋮\left(2n+1\right)\\\left(2n+1\right)⋮\left(2n+1\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}2\left(3n+8\right)⋮\left(2n+1\right)\\3\left(2n+1\right)⋮\left(2n+1\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(6n+16\right)⋮\left(2n+1\right)\\\left(6n+3\right)⋮\left(2n+1\right)\end{cases}}\) Trừ 2 vế đi ta được:
\(\Rightarrow\left(6n+16\right)-\left(6n+3\right)⋮\left(2n+1\right)\)
\(\Leftrightarrow13⋮\left(2n+1\right)\Rightarrow\left(2n+1\right)\inƯ\left(13\right)=\left\{-13;-1;1;13\right\}\)
\(\Leftrightarrow2n\in\left\{-14;-2;0;12\right\}\)
\(\Rightarrow n\in\left\{-7;-1;0;6\right\}\)
Vậy \(n\in\left\{-7;-1;0;6\right\}\)
b) Ta có:
\(S=3+3^2+3^3+3^4+...+3^{2020}\)
\(S=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2017}+3^{2018}+3^{2019}+3^{2020}\right)\)
\(S=3\cdot\left(1+3+3^2+3^3\right)+...+3^{2017}\cdot\left(1+3+3^2+3^3\right)\)
\(S=3\cdot40+...+3^{2017}\cdot40\)
\(S=\left(3+...+3^{2017}\right)\cdot40\) chia hết cho 40
Hình như bạn thiếu số hạng 4 trong tổng A nhé
\(4A=4+4^3+4^4+...+4^{100}\)
\(\Rightarrow4A-A=\left(4+4^2+4^3+4^4+...+4^{100}\right)-\left(1+4+4^2+4^3+...+4^{99}\right)\)
\(\Rightarrow3A=4^{100}-1\)
\(\Rightarrow A=\frac{4^{100}-1}{3}\)
Mà B = 4100 nên \(A=\frac{B-1}{3}\Rightarrow A=\frac{B}{3}-\frac{1}{3}\) do đó \(A< \frac{B}{3}\)
1, Số có tận cùng là 3 khi nâng lên lũy thừa 4n sẽ có tận cùng là 1
Do đó: \(43^{43}=43^{4.10+3}=\left(....1\right).\left(...7\right)=\left(...7\right)\)
Số có tận cùng là 7 khi nâng lên lũy thừa 4n sẽ có tận cùng là 1
Do đó: \(17^{17}=17^{4.4+1}=\left(.....1\right).\left(...7\right)=\left(...7\right)\)
\(\Rightarrow43^{43}-17^{17}=\left(...7\right)-\left(....7\right)=\left(....0\right)\)
Số có tận cùng là 0 thì chia hết cho 5
\(\Rightarrow43^{43}-17^{17}⋮5\)
2. Tổng các chữ số của \(100^{1995}\)là:
1+0+0+....+0=1
\(\Rightarrow\)Tổng các chữ số của \(100^{1995}\)và 8 là:
1+8=9 \(⋮\)9
\(\Rightarrow\left(100^{1995}+8\right)⋮9\)
Vậy \(\frac{100^{1995}+8}{9}\)là số tự nhiên
3, \(3+3^2+3^3+....+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{96}+3^{97}+3^{98}+3^{99}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{96}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+3^5+...+3^{96}\right)\)
\(\Rightarrow\left(3+3^2+3^3+....+3^{100}\right)⋮40\)(vì có chứa thừa số 40)