Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
Ta có: abcdeg = 1000abc + deg = 2000deg + deg = 2001deg
Vì 2001 chia hết cho 23 và 29 => 2001deg chia hết cho 23 và 29 => abcdeg chia hết cho 23 và 29
Câu 1 :
b) [( 3x + 1 )3] = 150 => ( 3x + 1 )3 = 1 => 3x + 1 = 1 => 3x = 0 => x = 0
Câu 2: Theo đề bài thì \(a\equiv b\left(mod7\right)\Rightarrow a-b\equiv0\left(mod7\right)\)
Hay a - b chia hết cho 7 (đpcm)
Nếu cách trên sai thì lấy cách sau chữa liền,thầy khỏi la:v
Do a chia hết cho 7,đặt a = 7k. Do b chia hết cho 7, đặt b = 7h
Khi đó \(a-b=7\left(k-h\right)⋮7\) (đpcm)
Hai cách cùng sai thì mình chịu. (chắc ko có cái này đâu:v)
a, Ta có:\(\overline{abcdeg}\)=\(\overline{ab}.10000+\overline{cd}.100+\overline{eg}\)
\(=\overline{ab}.9999+\overline{ab}+\overline{cd}.99+\overline{cd}+\overline{eg}\)
\(=\left(\overline{ab}.9999+\overline{cd}.99\right)+\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\)
Ta thấy \(\left(\overline{ab}.9999+\overline{cd}.99\right)⋮11\)
Mà \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)⋮11\)
Vậy \(\overline{abcdeg}⋮11\)
b, Ta có: 72=8.9
\(\Rightarrow10^{28}+8⋮8;9\)
Ta thấy: \(10^{28}\)gồm 1 chữ số 1 và 28 chữ số 0 đứng sau nó
\(\Rightarrow10^{28}+8\) gồm 1 chữ số 1, 27 chữ số 0 đứng sau và chữ số 8 ở tận cùng.
\(\Rightarrow10^{28}+8\) có tổng các chữ số là 9
\(\Rightarrow10^{28}+8⋮9\) (1)
Ta xét đến 3 chữ số tận cùng của \(10^{28}+8\)là 0, 0, 8 và tổng của 3 chữ số đó là 8.
Mà 8\(⋮\)8 nên \(10^{28}+8⋮8\) (2)
Từ (1) và (2) suy ra \(10^{28}+8⋮72\)
C1 : Dấu hiệu chia hết cho 11 :
1 số chia hết cho 11 và chỉ khi tổng các số hàng chẵn / lẻ chia hết cho 11
Theo giả thiết /ab + /cd + /eg = 10a + b + 10c + d + 10e + g = 11. ( a + c + e ) + ( b +d + g ) - ( a + c + e ) chia hết cho 11
Suy ra : ( b + d + g ) - ( a + c + e ) chia hết cho 11
Suy ra abcdeg chia hết cho 11
C2 : Ta có
abcdeg = ab . 10000 = cd . 100 + eg
= ( 9999ab ) + ( 99cd )+ ( ab + cd + eg )
Vì 9999ab + 99cd chia hết cho 11 và ab + cd + eg chia hết cho 11
Suy ra : abcdeg chia hết cho 11
( cách nào cũng đúng nha )